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Summary

This paper presents a novel method for geographically searching GEDI lidar data version 1.
An example execution time over a simulated 2 years worth of GEDI coordinate data (10+
billion points and 149 GB in size) leveraging a parallel search on a single compute instance
ran in less than 1/100th of a second and used 4.64 GB of memory. The search accuracy
included an area averaging 4.73 meters above and below GEDI's swath path +/- error
introduced by using a spherical earth model (< ~ 20 meters of error). The included code is
from a working prototype in python using mostly SciPy, GeoPy and Numba libraries.

Introduction

GEDI" (Global Ecosystem Dynamics Investigation) released data to the public on January 21,
2020? and a geo-locator was released shortly thereafter on February 10th, 2020°. When
satellites and other remote sensing instruments introduce new data to research
communities a geo-locator may be written to enable that data to be searchable and more
usable.

This paper presents an accurate and computationally efficient method of geo-searching
GEDI data by taking the reader through the investigative process and some of the
trial-and-error along the way to a solution. If you are a programmer, a scientist or
somewhere on the path to becoming either (or both!) then you're the intended audience.
Let's begin!

What is GEDI?

GEDI is a light ranging and detection (lidar) / laser altimeter mounted to the International
Space Station (ISS). According to GEDI's website, "GEDI will provide answers to how
deforestation has contributed to atmospheric CO2 concentrations, how much carbon forests will
absorb in the future, and how habitat degradation will affect global biodiversity." “GEDI has the
highest resolution and densest sampling of any lidar ever put in orbit (and) is a full-waveform
lidar instrument that makes detailed measurements of the 3D structure of the Earth’s surface”.

' GEDI website - https://gedi.umd.edu/
2 GEDl initial public release - https://earthdata.nasa.gov/learn/articles/first-gedi-data-available
3 GEDI Finder announcement - https://gedi.umd.edu/Ip-daac-release-of-gedi-finder/
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What is the Problem?

GEDI, over the lifetime of its 2+ year mission, is projected to have 200+ TB of data files
(known as granules) containing 149+ GB of geo-located point data. Working with that much
data can be unwieldy and maybe we're only interested in a land area within a single
country or large forest and, therefore, only need to download or otherwise access a subset
of the available files. Our geo-locator service would take the geometry of our area of
interest (AOI) and only return the URLs for data files that may be relevant. Specifically, we'll
create a bounding box or rectangle of longitude and latitude around our AOI and then we'll
determine which data intersect the bounding box.

Our goal, then, is to write software which can quickly search point data within a reasonable
margin of error based on a user-supplied bounding box.

Understanding the Data

The path of a GEDI orbit drawn on a map has the shape of an imperfect sinusoidal line-a
string laid across the globe. When those orbits build up over time they criss-cross forming a
net or latticework.

An illustration of orbit 2352, courtesy of LP DAAC*
(from: https://lpdaac.usgs.gov/media/images/GEDI L1B Orbit02352 Orbit.original.png

4 https://lpdaac.usgs.gov/products/gedi01 bv001/
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The range of a single orbit is about 51.6 degrees to -51.6 degrees latitude and will cover
most longitudes. The data usually crosses the anti-meridian and the start and end of each
orbit will be at different longitudes. For instance, one of the orbits (not shown) begins at
56.51247116483483 degrees longitude, crosses the antimeridian between longitudes
179.99995720557044 and -179.99976982688509, and then finishes its orbit at longitude
32.930112087033024.

If you zoom in on an orbit (and one orbit has multiple ‘products’ with one granule or file per
orbit per product) you would see eight parallel ground tracks made by regularly spaced
points of laser observations. If you're familiar with how farmers commonly grow corn, think
of each point as a corn stalk with a string of points forming a corn row.

The geo-located waveforms or data points are about 25 meters wide and, on a given row or
track, are spaced about 60 meters apart. There is about 600 meters of space between each
track for a total swath width of 4.2 kilometers. The eight GEDI beams are: 0000, 0001, 0010,
0011, 0101, 0110, 1000, and 1011. Beam 0110 or beam 'six" is also the sixth beam ordinally
and is the only one with associated coordinate data. The first beam has the highest latitude
and the last beam has the lowest. The location data are degrees of longitude and latitude
and are stored as double floats (8 bytes) in a Geographic Coordinate Reference System
(CRS) ("WGS84"). Granules are persisted in a complicated filesystem-in-a-file format called
HDF5°.

What will be our Approach?

The nature of GEDI data makes for interesting work when implementing a locator. GEDI has
no hard boundaries apart from each orbit, just individual points. The granules themselves
aren't associated with pre-defined tiles or bounding boxes like some other remote sensing
products. If you've ever worked with splines in a vector graphics program like Inkscape, you
might know they're based on math. With the path of the data being mostly sinusoidal, what
if we were able to fit a mathematical function to each orbit’s curve?

B
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A spline animation showing how a curve can be constructed from control points.

> HDF file format - https://en.wikipedia.org/wiki/Hierarchical Data Format
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Animation by Phil Tregoning, Public Domain.

Earlier | had mentioned we need to be accurate within a margin of error. Geocoding, for
example, is considered “highly accurate” if it has a margin of error less than 50 meters®.
We'll see how close we can get to that.

I'll include some code examples written in Python but many programming languages would
be appropriate for a project like this one.

Investigations: Fitting a Trig Function

First, we'll want to download a sample of Level 1B GEDI granules’ and extract the longitude
and latitude for each point of the 0110 beam. They're about 40MB in size when stored as
JSON and will be the basis data for fitting functions.

extract coords() :
from path = './path/to

to path = './path/to/gedi 1lb 2019 05"

for root, dirs, files os.walk (from path) :
if len(files) > 0:
for £ files:
with open (os.path.join (root,

granule = hb5py.File(g, 'r')
output name = re.sub ( \ .
print (output name)
with open(os.path.join(to path, output name), 'w') as output file:

output data . : output name,

granule[ 'BEAMO0110 ocation/longitude

granule['BEAM0110/geoclocation/latitude binO"] [()].tolist ()}

json.dump (output data, output file)

6

https://www.esri.com/arcgis-blog/products/analytics/analytics/geocoding-delivering-high-location-ac

curacy/
Z https://lpdaac.usgs.gov/tools/data-pool/
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Our first test will be to see how a sinusoidal function fits the data. The following code uses
SciPy's curve fit®to take a sine function and adjust its arguments according to a least
squares linear regression®. If you're unfamiliar with least squares regression this short
video gives a great introduction.

Regarding the anti-meridian: it’s the global boundary opposite the (prime) meridian
where longitude is 0. The anti-meridian is 180 degrees (or -180 degrees). From a
coordinate reference system standpoint, we consider the anti-meridian to be the
beginning and the end and geographic features which cross it should be vertically cut in
two. In our case, any orbit of GEDI data we deal with will be cut at this point as needed.

Here's an attempt at fitting a full orbit of data:

from geopy.distance import geodesic
import Jjson

ort matplotlib.pyplot as plt

from scipy.optimize import curve fit
from statistics import mean

import time

split on anti meridian(lons, lats):

nnmroTy i ofi ists, lons and lats, and return two 1lis

wwon

_fn(lons, lats):
am = 0
for i range (1, len(lons)):

if (lons[i-1] > 0)

~

£f am >

return [lons[0O:am], lons[am:]], [lats[O:am], lats[am:]]

return [lons], [lats]

& Scipy curve_fit - https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve fit.html
° Least squares regression - https://en.wikipedia.org/wiki/Least squares
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acc_lons
acc_lats
for lons part, lats part zip(lons, lats):
lons parts, lats parts = fn(lons part, lats part)
for lons lons parts:
acc_lons.append (lons )
for lats lats parts:
acc_ lats.append(lats )

return acc _lons, acc lats

get fn error rates(fn, fit, lons, lats):

""" Take a function fn, array of longitude values lons, and array of
latitude values lats and return the mean average error and maximum
error between function-calculated latitude and reference latitude

values. """

deltas lat = [((lats[i], 0), (fn(lons[i], *£fit[0]), 0)) for i range (len(lons)) ]

deltas km = [geodesic (*points) .kilometers for points deltas lat]

return mean(deltas km), max(deltas km)

my sin(x, freq, amplitude, phase, offset):

return np.sin(x * freq + phase) * amplitude + offset

time.time ()

"./gedi_ coords/GEDIO1 B 2019108002011 001959 T03909 02 003 01"

open (filename) as coords:

lonlat = json.load(coords)

lons , lats = split_on_anti_meridian([lonlat[';ons'J], [lonlat['lats'
for i range (len(lons )) :

lons.append(np.array([float (x) for x lons [i]]))




0.04]
range (0, 2):
guess_amplitude = 1
guess phase = 1

guess_offset = 0

pO=[guess freq[i], guess amplitude, guess phase, guess offset]

fit = curve fit(my sin, lons[i], lats[i], pO=pO0)

data fit = my sin(lons[i], *fit[0])

avg error, maxX error = get fn error rates(my sin, fit, lons[i], lats[i])

1

print (f'Avg error: {avg error}, Max error: {max error}')

print (*£1it[0])

plt.plot (lons[i], lats[i], '.")

plt.plot(lons[i], data fit)
plt.show ()

total time = time.time() - start time

print ('Total time taken: S onds'.format (total time))

(output)
Avg error: 174.42631416942262, Max error: 713.7965575081116
0.022819569935377544 -52.727145520176194 7.484391428110654 1.0427322123266742
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Avg error: 143.76553519578917, Max error: 595.444003946346
0.024425584080654244 50.83506880084666 -0.5238782974421087 -0.9183431695966431

1 1 T 1 T 1 T 1 1
-180 -1600 -140 -120 -100 —-80 60 40 20

Total time taken: 250.415 seconds
(end output)

What we see above are two outputs for granule

GEDIO1 B 2019108002011 001959 T03909 02 003 01, one output each for data
before and after the anti-meridian. Data points are the blue line and our fitted function is in
orange. We derive the error by taking each of the 1,097,865 data points and finding an
ellipsoid model geodetic distance'® between actual latitude data and the fitted function

0 https://en.wikipedia.org/wiki/Geodesic
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computed latitude at a data point’s longitude. The maximum error is the largest of these
distances and the average is the mean across the population.

Results will vary by granule/orbit but, in this case, data before the anti-meridian has an
average error of ~ 174 km and max error of ~ 714 km. Unfortunately these results are

abysmal. There are 511,535 data points before the anti-meridian; would we get better

results by fitting the same function across fewer points?

(output)
Avg error: 89.71874863551194, Max error: 383.5056917972365
0.013393636818693024 120.91332836643203 4.538724550082946 69.54807178206747

20 1

Total time taken: 90.574 seconds
(end of output)

Taking 400,000 points instead of 511,535 is still far from our maximum error goal but
notice how the average error is ~ 90 km and maxes out at ~ 383 km. In this case,
decreasing the amount of data we're trying to fit by 22% improved our error rates by about
37%. We'll use this as a hint for future work.

In addition to fitting functions to smaller data sets, what if we also tried fitting a different
kind of function like polynomials?

Investigations: Fitting a Polynomial, Part 1



A polynomial is “an expression consisting of variables ... and coefficients”". The degree of
a polynomial is based on the highest exponent.
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An example polynomial: 2x® - 3x* - 200x® + 125x* + 1.5x + 9

To establish a baseline of accuracy over our sample granule, here are the results for each
side of the anti-meridian split (the same spatial extent used in each series) using 5 to 50
degree polynomials in 5 degree increments:

Before anti-meridian:
polynomial degree,
5, 76.55509637535208,

10, 10.61696980812977,

15, 1.3742996807505743,
20, 0.9463589112804677,
25, 0.36587500365615094,
30, 0.6121521654083976,
35, 0.3946447194103193,

40, 0.20621685112677862,
45, 0.34909398944147363,
50, 0.17560606903268472,

After anti-meridian:
polynomial degree,
5, 56.536427851501415,

10, 4.858796049696968,

15, 0.8223061044425902,
20, 0.6138984906060114,
25, 0.4433907590899257¢6,
30, 0.24080619500467015,
35, 0.11282835661474254,

avg error,
428.51018690324673
52.66230616071602

avg error,
299.8989631295974
39.10767524010038

max error

8.416259452795414
5.84428483614433
3.7612231913568124
3.884122556954003
3.752943781548051
2.297003965498448
3.2346368757710366
2.0494112740157284

max error

5.550106052769198

3.9214406917995404
3.437786979647548
2.7728586944941496
1.2100705819471451

" https://en.wikipedia.org/wiki/Polynomial
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40, 0.17938472689470317, 2.041906852656545
45, 0.08118271662070943, 0.9414158801294034
50, 0.12419120539731891, 1.5798505249781858

It's interesting how, in this case, beyond a ~ 35 degree polynomial the fit stops reliably
improving.

SciPy documentation warns us against using high degree polynomials due to loss of
precision. The loss of digits beyond the floating point representation’s mantissa’? become
significant when a number is taken to such a high exponent as the loss of precision
compounds itself. We could change our representation to something more than 64-bits
but that trades speed for accuracy and would limit our 3rd-party software library
options. That said, it would be interesting to experiment with higher-bit representations.

To achieve greater accuracy we can repeat what we did earlier when we fit a trig function:
apply function fitting across slices or partitions of data of varying sizes. The following
experiment divides the data into an increasing number of partitions, 1 through 100, and
applies polynomial fitting functions of degree 2 through 40 (quadratic, cubic, quartic, and
so on). It's worth pointing out that NumPy is doing all the heavy lifting here - thank you
NumpPy:

m geopy.distance import geodesic
import Jjson
import math
import numpy as np
from statistics import mean
import time

import warnings

split on anti meridian(lons,

wwn

_fn(lons, lats) :

range (1, len(lons)):
(lons[i-1]

am = i

break

12 https://fabiensanglard.net/floating point visually explained/
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if am > 0:
return [lons[0O:am], lons[am:]], [lats[O:am], lats[am:]]
else:

return [lons], [lats]

acc_lons
acc_ lats
for lons part, lats part zip (lons, lats):
lons parts, lats parts = fn(lons part, lats part)
for lons lons parts:
acc lons.append (lons )
for lats lats parts:

acc lats.append(lats )

return acc lons, acc lats

generate polynomial (deg, lons, lats):
""" Takes degree of polynomial deg, array of longitude values lons, and
array of latitude values lats and attempts to fit a polynomial to the
data via non-linear regression (least squares). Returns the

polynomial."""

with warnings.catch warnings() :

warnings.simplefilter ('ignore', np.RankWarning)
pf = np.polyfit(lons, lats, degq)
return np.polyld (pf)

get fn error rates(fn, lons, lats):

""" Take a function fn, array of longitude values lons, and array of
latitude values lats and return the mean average error and maximum
error between function-calculated latitude and reference latitude

values. """

deltas lat = [((lats[i], 0), (fn(lons[i]), 0)) for i range (len(lons)) ]
deltas km = [geodesic (*points) .kilometers for points deltas lat]

return mean(deltas km), max(deltas km)




input filename =
output filename JeEEeRE w o
partition range =

pn degree range

start time = time.time ()

with open (input filename) as coords:
with open (output filename, 'w') as output:
lonlat = json.load (coords)

lons , lats = split on anti meridian([lonlat['lo

output.write ('total pe itions, polynomial de

for parts range (*partition range) :

sample size = math.ceil (len(lons [0]) / parts)
lons = np.array(lons [0] [:sample size])

lats = np.array(lats [0] [:sample size])

for deg range (*pn_degree range) :
pn = generate polynomial (deg, lons, lats)
avg_error, max error = get fn error rates(pn, lons, lats)

output.write (f'{parts}, {deg}, {avg error}, {max error}\n')

total time = time.time() - start time

print ('Total time taken: S :nda'.format(totalitime))

In order to better visualize the results, here is a heatmap with hue based on maximum
error. The y-axis represents the number of partitions and the x-axis is the degree of
polynomial. The first partition is shown and meant to be a representative sample of the
rest (graph code not shown):
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It took 7.75 hours to generate the data for this graph on an AMD FX-8350

There are a couple patterns worth noting: first, within a given number of partitions and as
we increase the degree of the polynomials we at some point early on see diminishing and
then negligible returns on error rate reduction. Second, we seem to achieve decent
accuracy with low degree polynomials if the number of partitions is relatively high;
increasing the total number of partitions reduces the amount of relative change and
flattens the curve within the dataset. According to this test 90 partitions and a 7 degree
polynomial achieves an accuracy of better than 20 meters.

However, if we look at the accuracy of the partitions beyond the first we see a very different
picture. Shown in the chart below are all ~90 partitions and the error rate varies widely.
Here's the accuracy over our sample granule

GEDIO1 B 2019108002011 001959 T03909 02 003 01:

Error rates across fixed partitions (91) over raw data

0114

Polynomial to Real Data in Kilometers

Partition Number

Maximum error in Blue, Average error in yellow

The polynomials fit to each partition tend to achieve a maximum error of 20 meters or less
but they can also fit much worse at over 100 meters (0.1 km). This variance is concerning
and suggests we should probably seek another approach.

On the Uses of Error

The significance of generating a maximum error rate for each partition is twofold-we've

seen one use so far and we'll see a second use later. The error rate indicates how accurate
a fitted function is to the actual GEDI coordinates. If the curve is of acceptable quality then
we've fulfilled an important requirement and come closer to a usable mathematical proxy.



The utility of maximum error continues when we use fitted functions as the ‘engine’ in our
search engine. We'll take the lon/lat values of the bounding box around a user’s AOIl and
see if they intersect with data generated by the polynomial, +/- the maximum error.
Knowing the longitudinal extent of a given partition, a polynomial and the maximum
(latitudinal) error of the polynomial over that partition means we’ll know whether a granule
might intersect a bounding box, with our degree of uncertainty equal to the error. In the
end we may end up returning a granule that doesn't actually intersect an AOI but we won't
miss any granules that should match. In other words, given the tools we're building up we
know there may be false positives but there shouldn't be any false negatives.

Investigations: Fitting a Polynomial, Part 2

Our strategy for fitting polynomials to the data so far has revolved around defining the
number of fixed width partitions into which we subdivide the data as well as the degree of
polynomial applied to each partition. What if instead we turn things around and take our
error rate as our goal, our invariant, and let the code choose both the number of partitions
and the partition width needed to achieve that goal? We could also let the code choose the
degree of polynomial but because degree has diminishing to negligible returns as we
increase its value, we could instead make that, too, an invariant and choose the polynomial
degree ourselves. A drawback to using arbitrarily large polynomials is that their storage
cost is degree-plus-one times the number of partitions times the number of orbits in our
dataset and it's beginning to seem possible that the final searchable dataset could reside
entirely in memory; this would make for faster searches. Having consistent memory sizes
for each polynomial also means we may be able to traverse our data structures more
efficiently and use libraries such as numpy and numba which work best (in the case of
NumPy) or expect (in the case of Numba) uniformity of type (homogeneous arrays).

Here is the code to dynamically size partitions over the sample granules:

def apply partition latitudes (p) :

bbox = poly bbox(p['pn'], pl['lon min'], p['lo '], pl'max error'])
lat range = {'lat min': bbox[0][1], 'lat max': bbox[1][1]}

return {**p, **lat range}

f create dynamic partitions(lons , lats ):

max inc idx = 0

max increments = [100, 1000, 20000]



pn_degree = 7
error threshold = ERROR THRESHOLD

results = []

lons , lats = split on anti meridian([lons ], [lats_ ], pn degree)

for s lons, s lats zip(lons , lats ):
lower bound = 0
upper bound pn_degree + 1
known good = pn degree + 1

known bad = len (s lons)

while (upper bound + 1) < len(s_lons):
while
lons = s lons[lower bound:upper bound]
lats = s lats[lower bound:upper bound]
pn = generate polynomial (pn_degree, lons, lats)

avg_error, max error = get fn error rates(pn, lons, lats)

((known bad - known good) == 1) (known good > known bad) :

upper bound = known good

lons = s lons[lower bound:upper bound]

lats = s lats[lower bound:upper bound]

pn = generate polynomial (pn_degree, lons, lats)
avg_error, max error = get fn error rates(pn, lons, lats)

break

if max error <= error threshold:
known good = upper bound
maybe increment = int ((known bad - upper bound) / 2)
if maybe_increment > max_increments[max_inc_idx]:
increment = max increments[max inc idx]
max inc idx += 1
if max inc_idx >= len (max increments) :

max inc idx = len(max increments) - 1




elses

increment = maybe increment
upper bound = upper bound + increment
if upper bound == known good:

upper bound += 1

else:

known bad = upper bound

upper bound = upper bound - int ((known bad - known good) / 2)

if upper bound == known bad:
upper bound -= 1

max inc idx = 0

lon min = s lons[lower bound]

lon max = s lons[upper bound]

partition = {'left extent': lower bound,
'right extent': upper bound,
'pn': tuple(pn.c),
'lon min': lon min,
'lon max': lon max,
'max error': max error,

'avg error': avg error}

partition = apply partition latitudes (partition)

results.append (partition)

lower bound upper bound + 1

upper bound lower bound + pn degree + 1

known good = lower bound + pn degree + 1

known bad = len (s lons)

return sorted(results, key= x: x['lon min'])




filter invalid coords (lons , lats ):

""" Takes an array of longitude values lons and an array of latitude
values lats and returns a copy of each with invalid with invalid
point data removed. """

lons = deepcopy (lons )

lats deepcopy (lats )

for i range (len(lons)-1, 0, -1):
if (lons[i] < -180) (lons[i] > 180) math.isnan (lons[i]) \

(lats[i] < =-90) (lats[i] > 90) math.isnan (lats[i]) :
print (f'Bad data removed at index {i}: {lons[il}, {lats[i]}"')
del lons[i]
del lats[i]

return lons, lats

do (input filenames, input path, output path):
for input filename input filenames:
print ("\n' + input filename)

with open (input path + input filename) as coords:

coords json = json.load(coords)

lons, lats filter invalid coords (coords json['lons'],

coords json['lats'])

partitions create dynamic partitions(lons, lats)

with open (output path + input filename + '.json', 'w') as output file:

json.dump (partitions, output file)

1

f name == main '

start time = time.time ()

with Pool (multiprocessing.cpu count()) as p:
p.starmap(do, [[[x], input path, OUTPUT PATH] for x

(get filenames (INPUT PATH))])




print ('Total time taken: seconds'.format (time.time () - start time))

And here is some sample output which may help in understanding some of what it does:

GEDIO1 B 2019108002011 001959 T03909 02 003 01

p:1, lower bound:0, known good:8, upper bound:8, known bad:496607,

max error:7.589719382119511e-06

p:1, lower bound:0, known good:8, upper bound:108, known bad:496607,
max_error:0.00013878764480470632

p:1, lower bound:0, known good:108, upper bound:1108, known bad:496607,
max error:0.0011892317332065987

p:1, lower bound:0, known good:1108, upper bound:21108, known bad:496607,
max _error:0.027517041144147266

p:1, lower bound:0, known good:21108, upper bound:41108, known bad:496607,
max error:0.03017484874312236

p:1, lower bound:0, known good:21108, upper bound:31108, known bad:41108,
max_error:0.027939061828534333

p:1, lower bound:0, known good:31108, upper bound:31208, known bad:41108,
max_error:0.02796734990838053

p:1, lower bound:0, known good:31208, upper bound:32208, known bad:41108,
max error:0.028312941969671275

p:1, lower bound:0, known good:32208, upper bound:36658, known bad:41108,
max error:0.030076797456290955

p:1, lower bound:0, known good:32208, upper bound:34433, known bad:36658,
max_error:0.02938518122491594

p:1, lower bound:0, known good:34433, upper bound:34533, known bad:36658,
max error:0.029478135143909876

p:1, lower bound:0, known good:34533, upper bound:35533, known bad:36658,
max _error:0.030125655634307472

p:1, lower bound:0, known good:34533, upper bound:35033, known bad:35533,
max error:0.02980586985488824

p:1, lower bound:0, known good:35033, upper bound:35133, known bad:35533,
max_error:0.02988107715667559

p:1, lower bound:0, known good:35133, upper bound:35333, known bad:35533,
max error:0.030029824399015387

p:1, lower bound:0, known good:35133, upper bound:35233, known bad:35333,
max _error:0.029957015041170522

p:1, lower bound:0, known good:35233, upper bound:35283, known bad:35333,
max error:0.029994421261588314

p:1, lower bound:0, known good:35283, upper bound:35308, known bad:35333,
max_error:0.030012615469099238

p:1, lower bound:0, known good:35283, upper bound:35296, known bad:35308,
max error:0.030003960888411656

p:1, lower bound:0, known good:35283, upper bound:35290, known bad:35296,
max error:0.029999573562684914

p:1, lower bound:0, known good:35290, upper bound:35293, known bad:35296,
max error:0.030001771139518976



p:1, lower bound:0, known good:35290, upper bound:35292, known bad:35293,

max error:0.03000103943413725

p:1, lower bound:0, known good:35290, upper bound:35291, known bad:35292,
max_error:0.03000030689072727

p:1, lower bound:0, known good:35290, upper bound:35290, known bad:35291,

max error:0.029999573562684914

p:2, lower bound:35291, known good:35299, upper bound:35299, known bad:496607,
max error:6.402811027698382e-08

p:2, lower bound:35291, known good:35299, upper bound:35399, known bad:496607,
max _error:3.712876595607178e-05

p:2, lower bound:35291, known good:35399, upper bound:36399, known bad:496607,
max_error:0.0009124606499388271

p:2, lower bound:35291, known good:36399, upper bound:56399, known bad:496607,
max _error:0.026815840995010092

p:2, lower bound:35291, known good:56399, upper bound:76399, known bad:496607,
max error:0.02821008014045565

p:2, lower bound:35291, known good:76399, upper bound:96399, known bad:496607,
max error:0.026437130476392765

p:2, lower bound:35291, known good:96399, upper bound:116399, known bad:496607,
max_error:0.02717588934470578

The first column starts with a repeating ‘p:1" which indicates which partition the dynamic
partitioner is currently making. For a given set of coordinates, if the error is too high it will
shrink the coordinate range to a number between a known good range and a known bad
range. If the error is too low it will do the opposite and increase the range. It proceeds back
and forth until it reaches the longest range to fit the specified error threshold at which
point it stores the partition information for later writing and continues to find the next
partition, and so on, until it goes through all points of an orbit. The error calculation here is
relatively slow but accurate to within millimeters.

Here's a graph from data generated by the code above for one granule (graph code not
shown but it's using D3js v5):
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Note that this graph shows maximum and average error rates over the same data as the
previous graph and the axes here use the same linear scale and range. What has changed
is the x-axis is now “number of data points” instead of “partition number”. The actual
partition boundaries are not shown.

We specified an error rate of 30 meters (0.030 km) fitting 7 degree polynomials and the
code created partitions of varying widths in an attempt to keep each at or below 30 meters.
Seeing the results on this chart is both heartening and puzzling - why is there still a
deviation in accuracy greater than what we specified? This behavior can be seen across
many of over 100 sample granules to which | fit polynomials. In fact, some granules were
exceedingly problematic. The worst in the sample set had to have 9679 partitions to reach
30 meter max error across most of its data. If the data we are fitting functions to were
uniform then it should be reasonable to expect more uniform results.

The Shape of GEDI Data, Part 1

Let's zoom in on some problem areas of different granules and see what's going on.
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Some data have minor deviations, like small stair steps or an occasional point that's almost
on top of another one while other data deviate strongly from the main line. Why do they do
this? Is the data valid? And the question most relevant to our work: Do we need to consider
these data? Would an individual who uses our search want to include these outliers in their
results?

We know GEDI is a taskable satellite, meaning the instrument can be pointed as needed.
Specifically, it has the ability to move up to 6 degrees latitude off nadir'® so there will be
times when the instrument will be directed ‘off-path’. It's best to assume data released by
the GEDI team is vetted good data so we will account for it.

Accuracy of Our Approach

Over a sample month of data, May of 2019, | ran the dynamic partitioner with 7-degree
polynomials and specified error thresholds of 30m, 20m, 10m, and 5m. Shown below is a
histogram of achieved accuracy for each as well as other information that will help us
evaluate the results.

Polynomial Fit for Partitions of 30m (0.030 km) Specified Maximum Error

Maximum Error Rates Across Dynamic Partitions w/ 30m Threshold
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13 https://gedi.umd.edu/instrument/instrument-overview/



https://gedi.umd.edu/instrument/instrument-overview/

Average, mean:

0.028216439662905695 km

Average, median:

0.029954263344824216 km

Max error for worst fitting polynomial:

0.6869073938382132 km

Standard deviation or o:

0.005039136508381175 km

Percentage of data points at or less than specified error threshold: 99.937 %
Percentage of data points above specified error threshold: 0.063 %
Total number of partitions for sample month: 402,865
Average partitions per granule: 943
Most partitions for a granule: 9679
Least partitions for a granule: 11
Total size on disk for sample month (as JSON): 164 MB

Polynomial Fit for Partitions of 20m (0.020 km) Specified Maximum Error

Maximum Error Rates Across Dynamic Partitions w/ 20m Threshold
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0.01888378813809257 km
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0.6869073938382132 km




Standard deviation or o:

0.003850757467096522 km

Percentage of data points at or less than specified error threshold: 99.908 %
Percentage of data points above specified error threshold: 0.092 %
Total number of partitions for sample month: 606,931
Average partitions per granule: 1421
Most partitions for a granule: 11,333
Least partitions for a granule: 15
Total size on disk for sample month (as JSON): 246 MB

Polynomial Fit for Partitions of 10m (0.010 km) Specified Maximum Error

Maximum Error Rates Across Dynamic Partitions w/ 10m Threshold
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Average, mean:

0.009420246194762704 km

Average, median:

0.009966840586964055 km

Max error for worst fitting polynomial:

0.6869073938382132 km

Standard deviation or o:

0.0030379619266287868 km

Percentage of data points at or less than specified error threshold:

99.828 %

Percentage of data points above specified error threshold:

0.172 %




Total number of partitions for sample month: 1,077,172
Average partitions per granule: 2523
Most partitions for a granule: 15,982
Least partitions for a granule: 27
Total size on disk for sample month (as JSON): 436 MB

Polynomial Fit for Partitions of 5m (0.005 km) Specified Maximum Error

Maximum Error Rates Across Dynamic Partitions w/ 5m Threshold
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Average, mean: 0.00473401961305397 km
Average, median: 0.004969986895258308 km
Max error for worst fitting polynomial: 0.6869073938382132 km
Standard deviation or o: 0.0029390885193709146 km
Percentage of data points at or less than specified error threshold: 99.784 %
Percentage of data points above specified error threshold: 0.216 %
Total number of partitions for sample month: 1,696,332
Average partitions per granule: 3973
Most partitions for a granule: 19,957




Least partitions for a granule: 54

Total size on disk for sample month (as JSON): 687 MB

These stats demonstrate strong and consistent results from our dynamic partitioning code.
For example, to put 5 m of specified error (above and below) into perspective, it increases
our calculated swath footprint by only 0.237% or less over GEDI's actual swath and this is
the case for over 99.828% of our sample.

Notice that we didn't test a specified error threshold below 5 meters. While it would be
possible to do so, the accuracy probably isn't necessary for this application and we'll soon
see the error introduced by using spherical trigonometry (versus ellipsoid) can be a fair
amount larger (2x to 4x). Conversely, having some ‘extra slack’ in the fit may actually end up
being a desirable feature. A scientist may want to include all granules which have data that
intersect their AOI as well as any granules which are in very close proximity. As we've now
demonstrated, a wide range of specified error thresholds may be used with corresponding
memory tradeoffs. The search run-time differences will be covered soon.

The Shape of GEDI Data, Part 2

Before detailing the search process we should dig deeper into the differences between our
search model vs. the actual shape of GEDI data. As stated previously, we're using lon/lat
coordinates from beam 0110 (6) to fit our polynomials. One of the first steps in the search
process will be to see if the bounding box of a partition intersects the bounding box
containing the user-supplied AOI. That means we'll need to develop a way to include the
entire swath path, from the first track to the last, in our bounding box.
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The swath width is 4200m + (half the width of the first beam) + (half the width of the last
beam) = 4225m. The distance from beam 6 to beam 0 will always be 3012.5m and the
distance from beam 6 to beam “8” will always be 1212.5m. The pitfall in accounting for all of
the beams based on beam 6 is that our polynomials can only tell us a distance in latitude
perpendicular to the equator but our known distances are perpendicular to the path of a
GEDI orbit. We need to find a way to take track 6, add the due north distance to track 0 as
well as the due south distance to track “8". If we were to simply add the constant
perpendicular-to-slope distance then our estimated bounding box would be inaccurate
proportional to the slope of the orbit at that longitude.
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E.g. to find the latitudinal distance between track 6 and track 0 we must find the distance labelled “unknown”
above.



Thankfully there’s math that can take our 'known’ and the slope of the data path to derive
the ‘unknown’.

The earth is slightly larger around the equator than it is pole-to-pole. Because of this the
earth, like other planets, is called an ‘oblate spheroid™. The difference in the earth’s
radius at the equator vs. the north or south pole is about 21.385km. We'll be using
spherical trigonometry which treats the earth as a perfect sphere; it's more accurate than
euclidean equations but slightly less accurate than ellipsoid™ geodesics'™.

The first step is to translate our constant distance into degrees of arc length: The distance
from the northernmost swath edge to track 6 perpendicular to the orbit is 3.0125 km and
the constant distance we'll use for 1 degree latitude is 110.5743 km"’.

The perpendicular distance between tracks 0000 and 0110 is 3.0125 km. Therefore 0110 to
0000 arc length is 3.6125 km / 110.5743 km or 0.027244... degrees.

Next, we need to know the orbital slope. This can be accomplished by taking a fitted
polynomial’s first derivative' and supplying a longitude to get a slope value at that location.
We then take the arctangent or inverse tangent of the slope to find the slope angle. This
value is commonly called ‘theta”:

To find the latitudinal distance (the hypotenuse in the above right spherical triangle) we'll
use trigonometry based on Napier's Rules for right spherical triangles'. The diagram below

4 https://en.wikipedia.org/wiki/Spheroid#0Oblate spheroids

5 https://en.wikipedia.org/wiki/Earth ellipsoid

'6 https://en.wikipedia.org/wiki/Geodesics on an ellipsoid

7 https://calgary.rasc.ca/latlong.htm

'8 https://docs.scipy.org/doc/scipy/reference/generated/scipy.misc.derivative.html
19 https://en.wikipedia.org/wiki/Spherical trigonometry
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has been marked up with traditional designations for each angle and side as well as which
angles are equivalent. The capital letters are angles and the lower-case letters sides.

Based on theta, which is also ‘B’, and the known distance ‘a’, we can solve for ‘c’. For the
sake of demonstrating an example solution let's set the value of theta or B to 1 degree
which would make ‘a’ very nearly equal to ‘c’.
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Also note that we can use the same formula for distances both above and below track 6 as
the angles and distances are mirror opposites. And these are just the details for a positive
slope - if the slope is negative then we'll apply a different formula. In the drawings below,
positive slope is demonstrated on the left and negative slope is demonstrated on the right.

Accuracy Notes

By using spherical geometry to solve for our distances we gain simplicity and speed at the
cost of accuracy. “Big Circle” calculations are about 0.3% less accurate than the
millimeters-level accuracy of ellipsoid formulae from e.g. Vincenty®. For our purposes, that

20

https://community.esri.com/groups/coordinate-reference-systems/blog/2017/10/11/vincenty-formul
a
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loss of accuracy is, again, proportional to the slope of GEDI's orbit at a given longitude.
Specifically the vertical distance above track 6 will range from 3.0125 km at a 0 degree
slope to 4.6866 km at a 50 degree slope. That means across an orbit the additional error
will range from 9 m to 15 m above track 6 and 3.6 m to 6 m below. When accounting for the
total accuracy of our solution we need to add a static factor of 1.003 (0.3 %) to our
calculated swath path which will then naturally vary the amount of total error as needed.

What We've Discovered So Far

We've learned about GEDI's tracks, which one is geo-located and how the others are a
known distance away from each other. The first and last track define the extent of the
swath width or path. We've determined polynomials can very accurately fit GEDI's orbital
path within a specified and configurable distance and that the distance guides the number
of times a GEDI orbit must be partitioned.

We're almost done with our pre-search code - we'll cover the last piece we need under the
Search section, which is next, because it helps to first understand the Search algorithm.
This is the order in which | discovered it as well - realizing how the search works makes it
clear what we need to write next.

Search

The heart of the search process is the ability to take an AOI bounding box and know if it
intersects the swath extent. Our polynomial values won't be used in the search directly but
rather used to calculate this extent. While we haven't been overly concerned with
performance so far, code for these steps should now be as fast as possible.

We've touched on bounding boxes a number of times already and they're a commonly
used approximation for more complex shapes. Calculating bounding box intersection,
shown later, is also very fast code to run so it's probably best to use bounding box
intersection detection as far as we can in order to minimize more computationally
expensive steps.

How then do we make a final determination for swath/AOl intersection? There’'s complex
math that can figure it out for us, for example here, or if we zoom in far enough on our
polynomial or generalize it maybe we could treat it as a straight line and use Rotational
Directions or other methods demonstrated here.

As | was drawing bounding boxes around polynomials | realized we can achieve true swath
intersection detection with bounding boxes alone so long as we take the set intersection of
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longitude values between the AOI bounding box and a polynomial bounding box and then
follow-up with latitude overlap detection:
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(The AOI bounding box is in blue and the bounding box based on the set intersection of longitude
values of AOI and polynomial is in red)

In other words, to find our longitude range we would:

1. take the greater of: the minimum longitude of the AOI bounding box vs. the
minimum longitude of the current partition

take the the lesser of: the maximum longitude of the AOI bounding box vs. the
maximum longitude of the current partition

Then, if the latitude ranges for each bounding box (AOI and current partition’s swath width)
overlap we know there’s a search hit between the AOI and the granule the partition
belongs to; no difficult or long-running math required. That makes our search
turtles-and-bounding-boxes all the way down! (minus the turtles).



Inflections

And this is where we revisit the last piece of preparation required. Alongside the dynamic
partitioning code, similar to what we did with anti-meridian splitting, we must include
something that will cause a partition split along an orbital path inflection?', i.e. the tops and
bottoms for each orbit. We can have true swath intersection detection by checking for
overlapping latitudes at the extremes of common longitudes so long as the polynomial’s
slope doesn't change sign over the common longitudinal range. If we didn't split at
inflections, notice how the intersection detection described above would fail in this
example:

(The AOI bounding box is in blue. In order to find the upper extent of this polynomial we would e.g.
need to find the inflection point.)

We know GEDI's orbit will only have inflections at its extremes of latitude. Our search is
going to happen one partition at a time so we can avoid inflections in our search process by
splitting partitions at an inflection point, if they have one.

So - how do we detect for inflections and find inflections points? Because the raw
geo-located GEDI data is available to us my initial approach was to go back to that - the
source. Some example ideas included:

e Take the latitude absolute values, filter for those above 51.4 degrees, add up sample
ranges and find the one which has the highest value. Then, take the midpoint as the
inflection point.

e Total the inter-point slope across ranges and find the midpoint of the least
Create arrays over a predetermined width which collect whether pointi<i+ 1 and
assign -1 or 1. Then take the array that has a value closest to 0 and use the midpoint
as the inflection point.

2! https://en.wikipedia.org/wiki/Inflection point
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I think | had other ideas but none were very good. All of these ideas were a programmatic
hassle because GEDI can have irregular data. Jittery data might cause us to label local
maxima or minima as whole orbit inflections so | decided to go back to regression which, of
course, is regularly used to generalize data such as this.

My initial approach was to solve for longit