
 



Summary 
This paper presents a novel method for geographically searching GEDI lidar data version 1. 
An example execution time over a simulated 2 years worth of GEDI coordinate data (10+ 
billion points and 149 GB in size) leveraging a parallel search on a single compute instance 
ran in less than 1/100th of a second and used 4.64 GB of memory. The search accuracy 
included an area averaging 4.73 meters above and below GEDI’s swath path +/- error 
introduced by using a spherical earth model (< ~ 20 meters of error). The included code is 
from a working prototype in python using mostly SciPy, GeoPy and Numba libraries. 

Introduction 
GEDI  (Global Ecosystem Dynamics Investigation) released data to the public on January 21, 1

2020  and a geo-locator was released shortly thereafter on February 10th, 2020 . When 2 3

satellites and other remote sensing instruments introduce new data to research 
communities a geo-locator may be written to enable that data to be searchable and more 
usable. 
 
This paper presents an accurate and computationally efficient method of geo-searching 
GEDI data by taking the reader through the investigative process and some of the 
trial-and-error along the way to a solution. If you are a programmer, a scientist or 
somewhere on the path to becoming either (or both!) then you’re the intended audience. 
Let’s begin! 

What is GEDI? 
GEDI is a light ranging and detection (lidar) / laser altimeter mounted to the International 
Space Station (ISS). According to GEDI's website, ​"GEDI will provide answers to how 
deforestation has contributed to atmospheric CO2 concentrations, how much carbon forests will 
absorb in the future, and how habitat degradation will affect global biodiversity." “GEDI has the 
highest resolution and densest sampling of any lidar ever put in orbit (and) is a full-waveform 
lidar instrument that makes detailed measurements of the 3D structure of the Earth’s surface”. 
 

1 GEDI website - ​https://gedi.umd.edu/ 
2 GEDI initial public release - ​https://earthdata.nasa.gov/learn/articles/first-gedi-data-available 
3 GEDI Finder announcement - ​https://gedi.umd.edu/lp-daac-release-of-gedi-finder/ 

https://gedi.umd.edu/
https://earthdata.nasa.gov/learn/articles/first-gedi-data-available
https://gedi.umd.edu/lp-daac-release-of-gedi-finder/


What is the Problem? 
GEDI, over the lifetime of its 2+ year mission, is projected to have 200+ TB of data files 
(known as granules) containing 149+ GB of geo-located point data. Working with that much 
data can be unwieldy and maybe we’re only interested in a land area within a single 
country or large forest and, therefore, only need to download or otherwise access a subset 
of the available files. Our geo-locator service would take the geometry of our area of 
interest (AOI) and only return the URLs for data files that may be relevant. Specifically, we'll 
create a bounding box or rectangle of longitude and latitude around our AOI and then we’ll 
determine which data intersect the bounding box. 
 
Our goal, then, is to write software which can quickly search point data within a reasonable 
margin of error based on a user-supplied bounding box. 

Understanding the Data 
The path of a GEDI orbit drawn on a map has the shape of an imperfect sinusoidal line–a 
string laid across the globe. When those orbits build up over time they criss-cross forming a 
net or latticework. 
 

 
An illustration of orbit 2352, courtesy of LP DAAC  4

(from: ​https://lpdaac.usgs.gov/media/images/GEDI_L1B_Orbit02352_Orbit.original.png  

4 ​https://lpdaac.usgs.gov/products/gedi01_bv001/ 
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The range of a single orbit is about 51.6 degrees to -51.6 degrees latitude and will cover 
most longitudes. The data usually crosses the anti-meridian and the start and end of each 
orbit will be at different longitudes. For instance, one of the orbits (not shown) begins at 
56.51247116483483 degrees longitude, crosses the antimeridian between longitudes 
179.99995720557044 and -179.99976982688509, and then finishes its orbit at longitude 
32.930112087033024. 
 
If you zoom in on an orbit (and one orbit has multiple ‘products’ with one granule or file per 
orbit per product) you would see eight parallel ground tracks made by regularly spaced 
points of laser observations. If you're familiar with how farmers commonly grow corn, think 
of each point as a corn stalk with a string of points forming a corn row. 
 
The geo-located waveforms or data points are about 25 meters wide and, on a given row or 
track, are spaced about 60 meters apart. There is about 600 meters of space between each 
track for a total swath width of 4.2 kilometers. The eight GEDI beams are: 0000, 0001, 0010, 
0011, 0101, 0110, 1000, and 1011. Beam 0110 or beam 'six' is also the sixth beam ordinally 
and is the only one with associated coordinate data. The first beam has the highest latitude 
and the last beam has the lowest. The location data are degrees of longitude and latitude 
and are stored as double floats (8 bytes) in a Geographic Coordinate Reference System 
(CRS) ("WGS84").  Granules are persisted in a complicated filesystem-in-a-file format called 
HDF5 . 5

What will be our Approach? 
The nature of GEDI data makes for interesting work when implementing a locator. GEDI has 
no hard boundaries apart from each orbit, just individual points. The granules themselves 
aren’t associated with pre-defined tiles or bounding boxes like some other remote sensing 
products. If you’ve ever worked with splines in a vector graphics program like Inkscape, you 
might know they’re based on math. With the path of the data being mostly sinusoidal, what 
if we were able to fit a mathematical function to each orbit’s curve? 
 

 
A spline animation showing how a curve can be constructed from control points. 

5 HDF file format - ​https://en.wikipedia.org/wiki/Hierarchical_Data_Format 

https://en.wikipedia.org/wiki/Hierarchical_Data_Format


Animation by Phil Tregoning, Public Domain. 

 
Earlier I had mentioned we need to be accurate within a margin of error. Geocoding, for 
example, is considered “highly accurate” if it has a margin of error less than 50 meters . 6

We’ll see how close we can get to that. 
 
I’ll include some code examples written in Python but many programming languages would 
be appropriate for a project like this one. 

Investigations: Fitting a Trig Function 
First, we’ll want to download a sample of Level 1B GEDI granules  and extract the longitude 7

and latitude for each point of the 0110 beam. They’re about 40MB in size when stored as 
JSON and will be the basis data for fitting functions. 
 
import​ h5py 

import​ json 

import​ re 

import​ os 

 

def​ ​extract_coords​(): 

    from_path = ​'./path/to/GEDI01_B' 

    to_path = ​'./path/to/gedi_l1b_coords_2019_05' 

 

    ​for​ root, dirs, files ​in​ os.walk(from_path): 

        ​if​ ​len​(files) > ​0​: 

            ​for​ f ​in​ files: 

                ​with​ ​open​(os.path.join(root, f), ​'rb'​) ​as​ g: 

                    granule = h5py.File(g, ​'r'​) 

                    output_name = re.sub(​r​'​\.​h5$'​, ​''​, f) 

                    ​print​(output_name) 

                    ​with​ ​open​(os.path.join(to_path, output_name), ​'w'​) ​as​ output_file: 

                        output_data = {​'name'​: output_name, 

                                       ​'lons'​: 

granule[​'BEAM0110/geolocation/longitude_bin0'​][()].tolist(), 

                                       ​'lats'​: 

granule[​'BEAM0110/geolocation/latitude_bin0'​][()].tolist()} 

                        json.dump(output_data, output_file) 

 

6 
https://www.esri.com/arcgis-blog/products/analytics/analytics/geocoding-delivering-high-location-ac
curacy/ 
7 https://lpdaac.usgs.gov/tools/data-pool/ 

https://www.esri.com/arcgis-blog/products/analytics/analytics/geocoding-delivering-high-location-accuracy/
https://www.esri.com/arcgis-blog/products/analytics/analytics/geocoding-delivering-high-location-accuracy/
https://lpdaac.usgs.gov/tools/data-pool/


 
Our first test will be to see how a sinusoidal function fits the data. The following code uses 
SciPy's ​curve_fit  to take a sine function and adjust its arguments according to a least 8

squares linear regression . If you're unfamiliar with least squares regression ​this short 9

video​ gives a great introduction. 
 

Regarding the anti-meridian: it’s the global boundary opposite the (prime) meridian 
where longitude is 0. The anti-meridian is 180 degrees (or -180 degrees). From a 
coordinate reference system standpoint, we consider the anti-meridian to be the 
beginning and the end and geographic features which cross it should be vertically cut in 
two. In our case, any orbit of GEDI data we deal with will be cut at this point as needed. 

 
Here’s an attempt at fitting a full orbit of data: 
 
from​ geopy.distance ​import​ geodesic 

import​ json 

import​ matplotlib.pyplot ​as​ plt 

import​ numpy ​as​ np 

from​ scipy.optimize ​import​ curve_fit 

from​ statistics ​import​ mean 

import​ time 

 

 

def​ ​split_on_anti_meridian​(​lons​, ​lats​): 

    ​""" Take two lists of lists, lons and lats, and return two lists of lists 

        with lons and lats split on the antimeridian """ 

    ​# Working across the anti meridian boundary is numerically challenging so 

    ​#  it's best to break up our data along that boundary. 

 

    ​def​ ​_fn​(​lons​, ​lats​): 

        am = ​0 

        ​for​ i ​in​ ​range​(​1​, ​len​(lons)): 

            ​if​ (lons[i-​1​] > ​0​) ​and​ (lons[i] < ​0​): 

                am = i 

                ​break 

        ​if​ am > ​0​: 

            ​return​ [lons[​0​:am], lons[am:]], [lats[​0​:am], lats[am:]] 

        ​else​: 

            ​return​ [lons], [lats] 

 

8 Scipy curve_fit - ​https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html 
9 Least squares regression - ​https://en.wikipedia.org/wiki/Least_squares 

https://www.youtube.com/watch?v=YwZYSTQs-Hk
https://www.youtube.com/watch?v=YwZYSTQs-Hk
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
https://en.wikipedia.org/wiki/Least_squares


    acc_lons = [] 

    acc_lats = [] 

    ​for​ lons_part, lats_part ​in​ ​zip​(lons, lats): 

        lons_parts, lats_parts = _fn(lons_part, lats_part) 

        ​for​ lons_ ​in​ lons_parts: 

            acc_lons.append(lons_) 

        ​for​ lats_ ​in​ lats_parts: 

            acc_lats.append(lats_) 

  

    ​return​ acc_lons, acc_lats 

 

 

def​ ​get_fn_error_rates​(​fn​, ​fit​, ​lons​, ​lats​): 

    ​""" Take a function fn, array of longitude values lons, and array of 

        latitude values lats and return the mean average error and maximum 

        error between function-calculated latitude and reference latitude 

        values. """ 

    ​# Because we're computing distance between latitudes on the same longitude 

    ​#   the longitudinal value may be any value; 0, in this case 

    ​# One degree latitude is 110.567 km at the equator and 111.699 at the poles. 

    ​#   We could have used the Haversine formula which assumes a Great-circle but 

    ​#   the geodetic distance uses an ellipsoid representation and is more 

    ​#   accurate (WGS-84 ellipsoid by default) 

    deltas_lat = [((lats[i], ​0​), (fn(lons[i], *fit[​0​]), ​0​)) ​for​ i ​in​ ​range​(​len​(lons))] 

    deltas_km = [geodesic(*points).kilometers ​for​ points ​in​ deltas_lat] 

    ​return​ mean(deltas_km), ​max​(deltas_km) 

 

 

# sinusoidal function 

def​ ​my_sin​(​x​, ​freq​, ​amplitude​, ​phase​, ​offset​): 

    ​return​ np.sin(x * freq + phase) * amplitude + offset 

 

########################################################################### 

 

start_time = time.time() 

filename = ​".​/​gedi_coords​/​GEDI01_B_2019108002011_O01959_T03909_02_003_01" 

lons = [] 

lats = [] 

with​ ​open​(filename) ​as​ coords: 

    lonlat = json.load(coords) 

    lons_, lats_ = split_on_anti_meridian([lonlat[​'lons'​]], [lonlat[​'lats'​]]) 

    ​for​ i ​in​ ​range​(​len​(lons_)): 

        lons.append(np.array([​float​(x) ​for​ x ​in​ lons_[i]])) 



        lats.append(np.array([​float​(y) ​for​ y ​in​ lats_[i]])) 

 

guess_freq = [​0.1​, ​0.04​] 

for​ i ​in​ ​range​(​0​, ​2​): 

    guess_amplitude = ​1 

    guess_phase = ​1 

    guess_offset = ​0 

 

    p0=[guess_freq[i], guess_amplitude, guess_phase, guess_offset] 

 

    ​# find the parameters that fit the function to all of the data 

    fit = curve_fit(my_sin, lons[i], lats[i], ​p0​=p0) 

  

    ​# create lat data based on lon data and fit parameters 

    data_fit = my_sin(lons[i], *fit[​0​]) 

  

    ​# error rates 

    avg_error, max_error = get_fn_error_rates(my_sin, fit, lons[i], lats[i]) 

    ​print​(​f​'Avg error: ​{​avg_error​}​, Max error: ​{​max_error​}​'​) 

  

    ​print​(*fit[​0​]) 

 

    ​# lon, lat format 

    plt.plot(lons[i], lats[i], ​'.'​)  ​# blue 

    plt.plot(lons[i], data_fit)      ​# orange 

    plt.show() 

 

total_time = time.time() - start_time 

print​(​'Total time taken: ​{0:.3f}​ seconds'​.format(total_time)) 

 

(output) 
Avg error: 174.42631416942262, Max error: 713.7965575081116 

0.022819569935377544 -52.727145520176194 7.484391428110654 1.0427322123266742 

 



 

 

Avg error: 143.76553519578917, Max error: 595.444003946346 

0.024425584080654244 50.83506880084666 -0.5238782974421087 -0.9183431695966431 

 

 

 

Total time taken: 250.415 seconds 

(end output) 
 
What we see above are two outputs for granule 
GEDI01_B_2019108002011_O01959_T03909_02_003_01 ​, one output each for data 
before and after the anti-meridian. Data points are the blue line and our fitted function is in 
orange. We derive the error by taking each of the 1,097,865 data points and finding an 
ellipsoid model geodetic distance  between actual latitude data and the fitted function 10

10 ​https://en.wikipedia.org/wiki/Geodesic 
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computed latitude at a data point’s longitude. The maximum error is the largest of these 
distances and the average is the mean across the population. 
 
Results will vary by granule/orbit but, in this case, data before the anti-meridian has an 
average error of ~ 174 km and max error of ~ 714 km. Unfortunately these results are 
abysmal. There are 511,535 data points before the anti-meridian; would we get better 
results by fitting the same function across fewer points? 
 
(output) 
Avg error: 89.71874863551194, Max error: 383.5056917972365 

0.013393636818693024 120.91332836643203 4.538724550082946 69.54807178206747 

 

 
 

Total time taken: 90.574 seconds 

(end of output) 
 
Taking 400,000 points instead of 511,535 is still far from our maximum error goal but 
notice how the average error is ~ 90 km and maxes out at ~ 383 km. In this case, 
decreasing the amount of data we’re trying to fit by 22% improved our error rates by about 
37%. We’ll use this as a hint for future work. 
 
In addition to fitting functions to smaller data sets, what if we also tried fitting a different 
kind of function like polynomials? 

Investigations: Fitting a Polynomial, Part 1 
 



A polynomial is “an expression consisting of variables … and coefficients” . The degree of 11

a polynomial is based on the highest exponent. 
 

 
An example polynomial: 2x​5​ - 3x​4​ - 200x​3​ + 125x​2​ + 1.5x + 9 

 
To establish a baseline of accuracy over our sample granule, here are the results for each 
side of the anti-meridian split (the same spatial extent used in each series) using 5 to 50 
degree polynomials in 5 degree increments: 
 
Before anti-meridian: 

polynomial degree, avg error, max error 

5, 76.55509637535208, 428.51018690324673 

10, 10.61696980812977, 52.66230616071602 

15, 1.3742996807505743, 8.416259452795414 

20, 0.9463589112804677, 5.84428483614433 

25, 0.36587500365615094, 3.7612231913568124 

30, 0.6121521654083976, 3.884122556954003 

35, 0.3946447194103193, 3.752943781548051 

40, 0.20621685112677862, 2.297003965498448 

45, 0.34909398944147363, 3.2346368757710366 

50, 0.17560606903268472, 2.0494112740157284 

 

After anti-meridian: 

polynomial degree, avg error, max error 

5, 56.536427851501415, 299.8989631295974 

10, 4.858796049696968, 39.10767524010038 

15, 0.8223061044425902, 5.550106052769198 

20, 0.6138984906060114, 3.9214406917995404 

25, 0.44339075908992576, 3.437786979647548 

30, 0.24080619500467015, 2.7728586944941496 

35, 0.11282835661474254, 1.2100705819471451 

11 ​https://en.wikipedia.org/wiki/Polynomial 
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40, 0.17938472689470317, 2.041906852656545 

45, 0.08118271662070943, 0.9414158801294034 

50, 0.12419120539731891, 1.5798505249781858 

 
It’s interesting how, in this case, beyond a ~ 35 degree polynomial the fit stops reliably 
improving. 
 

SciPy documentation warns us against using high degree polynomials due to loss of 
precision. The loss of digits beyond the floating point representation’s mantissa  become 12

significant when a number is taken to such a high exponent as the loss of precision 
compounds itself. We could change our representation to something more than 64-bits 
but that trades speed for accuracy and would limit our 3rd-party software library 
options. That said, it would be interesting to experiment with higher-bit representations. 

 
To achieve greater accuracy we can repeat what we did earlier when we fit a trig function: 
apply function fitting across slices or partitions of data of varying sizes. The following 
experiment divides the data into an increasing number of partitions, 1 through 100, and 
applies polynomial fitting functions of degree 2 through 40 (quadratic, cubic, quartic, and 
so on). It’s worth pointing out that NumPy is doing all the heavy lifting here - thank you 
NumPy: 
 
from​ geopy.distance ​import​ geodesic 

import​ json 

import​ math 

import​ numpy ​as​ np 

from​ statistics ​import​ mean 

import​ time 

import​ warnings 

 

 

def​ ​split_on_anti_meridian​(​lons​, ​lats​): 

    ​""" Take two lists of lists, lons and lats, and return two lists of lists 

        with lons and lats split on the antimeridian """ 

    ​# Working across the anti meridian boundary is numerically challenging so 

    ​#  it's best to break up our data along that boundary. 

 

    ​def​ ​_fn​(​lons​, ​lats​): 

        am = ​0 

        ​for​ i ​in​ ​range​(​1​, ​len​(lons)): 

            ​if​ (lons[i-​1​] > ​0​) ​and​ (lons[i] < ​0​): 

                am = i 

                ​break 

12 ​https://fabiensanglard.net/floating_point_visually_explained/ 
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        ​if​ am > ​0​: 

            ​return​ [lons[​0​:am], lons[am:]], [lats[​0​:am], lats[am:]] 

        ​else​: 

            ​return​ [lons], [lats] 

 

    acc_lons = [] 

    acc_lats = [] 

    ​for​ lons_part, lats_part ​in​ ​zip​(lons, lats): 

        lons_parts, lats_parts = _fn(lons_part, lats_part) 

        ​for​ lons_ ​in​ lons_parts: 

            acc_lons.append(lons_) 

        ​for​ lats_ ​in​ lats_parts: 

            acc_lats.append(lats_) 

  

    ​return​ acc_lons, acc_lats 

 

def​ ​generate_polynomial​(​deg​, ​lons​, ​lats​): 

    ​""" Takes degree of polynomial deg, array of longitude values lons, and 

        array of latitude values lats and attempts to fit a polynomial to the 

        data via non-linear regression (least squares).  Returns the 

        polynomial.""" 

    ​with​ warnings.catch_warnings(): 

        warnings.simplefilter(​'ignore'​, np.RankWarning) 

        pf = np.polyfit(lons, lats, deg) 

        ​return​ np.poly1d(pf) 

 

 

def​ ​get_fn_error_rates​(​fn​, ​lons​, ​lats​): 

    ​""" Take a function fn, array of longitude values lons, and array of 

        latitude values lats and return the mean average error and maximum 

        error between function-calculated latitude and reference latitude 

        values. """ 

    ​# Because we're computing distance between latitudes on the same longitude 

    ​#   the longitudinal value may be any value; 0, in this case 

    ​# One degree latitude is 110.574 km at the equator and 111.699 at the poles. 

    ​#   We could have used the Haversine formula which assumes a Great-circle but 

    ​#   the geodetic distance uses an ellipsoid representation and is more 

    ​#   accurate (WGS-84 ellipsoid by default, same as GEDI) 

    deltas_lat = [((lats[i], ​0​), (fn(lons[i]), ​0​)) ​for​ i ​in​ ​range​(​len​(lons))] 

    deltas_km = [geodesic(*points).kilometers ​for​ points ​in​ deltas_lat] 

    ​return​ mean(deltas_km), ​max​(deltas_km) 

 

# # # 



 

input_filename = ​".​/​gedi_coords​/​GEDI01_B_2019108002011_O01959_T03909_02_003_01" 

output_filename = ​".​/​error_rates.csv" 

partition_range = [​1​, ​101​] 

pn_degree_range = [​2​, ​41​] 

 

start_time = time.time() 

 

with​ ​open​(input_filename) ​as​ coords: 

    ​with​ ​open​(output_filename, ​'w'​) ​as​ output: 

        lonlat = json.load(coords) 

        lons_, lats_ = split_on_anti_meridian([lonlat[​'lons'​]], [lonlat[​'lats'​]]) 

  

        output.write(​'total partitions, polynomial degree, avg error, max error​\n​'​) 

        ​for​ parts ​in​ ​range​(*partition_range): 

            ​# We're only going to deal with points before the anti-meridian for 

            ​#  this test. 

            sample_size = math.ceil(​len​(lons_[​0​]) / parts) 

            lons = np.array(lons_[​0​][:sample_size]) 

            lats = np.array(lats_[​0​][:sample_size]) 

 

            ​for​ deg ​in​ ​range​(*pn_degree_range): 

                pn = generate_polynomial(deg, lons, lats) 

                avg_error, max_error = get_fn_error_rates(pn, lons, lats) 

                output.write(​f​'​{​parts​}​, ​{​deg​}​, ​{​avg_error​}​, ​{​max_error​}​\n​'​) 

 

total_time = time.time() - start_time 

print​(​'Total time taken: ​{0:.3f}​ seconds'​.format(total_time)) 

 

 
 
In order to better visualize the results, here is a heatmap with hue based on maximum 
error.  The y-axis represents the number of partitions and the x-axis is the degree of 
polynomial. The first partition is shown and meant to be a representative sample of the 
rest (graph code not shown): 
 





It took 7.75 hours to generate the data for this graph on an AMD FX-8350 
 
There are a couple patterns worth noting: first, within a given number of partitions and as 
we increase the degree of the polynomials we at some point early on see diminishing and 
then negligible returns on error rate reduction. Second, we seem to achieve decent 
accuracy with low degree polynomials if the number of partitions is relatively high; 
increasing the total number of partitions reduces the amount of relative change and 
flattens the curve within the dataset. According to this test 90 partitions and a 7 degree 
polynomial achieves an accuracy of better than 20 meters. 
 
However, if we look at the accuracy of the partitions beyond the first we see a very different 
picture. Shown in the chart below are all ~90 partitions and the error rate varies widely. 
Here’s the accuracy over our sample granule 
GEDI01_B_2019108002011_O01959_T03909_02_003_01 ​: 
 

 
Maximum error in Blue, Average error in yellow 

 
The polynomials fit to each partition tend to achieve a maximum error of 20 meters or less 
but they can also fit much worse at over 100 meters (0.1 km). This variance is concerning 
and suggests we should probably seek another approach. 

On the Uses of Error 
The significance of generating a maximum error rate for each partition is twofold–we’ve 
seen one use so far and we’ll see a second use later. The error rate indicates how accurate 
a fitted function is to the actual GEDI coordinates. If the curve is of acceptable quality then 
we’ve fulfilled an important requirement and come closer to a usable mathematical proxy. 



The utility of maximum error continues when we use fitted functions as the ‘engine’ in our 
search engine. We’ll take the lon/lat values of the bounding box around a user’s AOI and 
see if they intersect with data generated by the polynomial, +/- the maximum error. 
Knowing the longitudinal extent of a given partition, a polynomial and the maximum 
(latitudinal) error of the polynomial over that partition means we’ll know whether a granule 
might​ intersect a bounding box, with our degree of uncertainty equal to the error. In the 
end we may end up returning a granule that doesn’t actually intersect an AOI but we won’t 
miss any granules that should match. In other words, given the tools we’re building up we 
know there may be false positives but there shouldn’t be any false negatives. 
 

Investigations: Fitting a Polynomial, Part 2  
Our strategy for fitting polynomials to the data so far has revolved around defining the 
number of fixed width partitions into which we subdivide the data as well as the degree of 
polynomial applied to each partition. What if instead we turn things around and take our 
error rate as our goal, our invariant, and let the code choose both the number of partitions 
and the partition width needed to achieve that goal?  We could also let the code choose the 
degree of polynomial but because degree has diminishing to negligible returns as we 
increase its value, we could instead make that, too, an invariant and choose the polynomial 
degree ourselves. A drawback to using arbitrarily large polynomials is that their storage 
cost is degree-plus-one times the number of partitions times the number of orbits in our 
dataset and it’s beginning to seem possible that the final searchable dataset could reside 
entirely in memory; this would make for faster searches. Having consistent memory sizes 
for each polynomial also means we may be able to traverse our data structures more 
efficiently and use libraries such as numpy and numba which work best (in the case of 
NumPy) or expect (in the case of Numba) uniformity of type (homogeneous arrays). 
 
Here is the code to dynamically size partitions over the sample granules: 
 
# (other functions same as before) 

 

def​ ​apply_partition_latitudes​(​p​): 

    ​""" Takes a dict p representing partition data and mutates that partition 

        data to include its minimum and maximum latitude values. """ 

    bbox = poly_bbox(p[​'pn'​], p[​'lon_min'​], p[​'lon_max'​], p[​'max_error'​]) 

    lat_range = {​'lat_min'​: bbox[​0​][​1​], ​'lat_max'​: bbox[​1​][​1​]} 

    ​return​ {**p, **lat_range} 

 

 

def​ ​create_dynamic_partitions​(​lons__​, ​lats__​): 

    max_inc_idx = ​0 

    max_increments = [​100​, ​1000​, ​20000​] 



    pn_degree = ​7 

    error_threshold = ERROR_THRESHOLD 

    results = [] 

    ​#partition_num = 1 

 

    lons_, lats_ = split_on_anti_meridian([lons__], [lats__], pn_degree) 

 

    ​for​ s_lons, s_lats ​in​ ​zip​(lons_, lats_): 

        lower_bound = ​0 

        upper_bound = pn_degree + ​1 

        known_good = pn_degree + ​1 

        known_bad = ​len​(s_lons) 

 

        ​while​ (upper_bound + ​1​) < ​len​(s_lons): 

            ​while​ ​True​: 

                lons = s_lons[lower_bound:upper_bound] 

                lats = s_lats[lower_bound:upper_bound] 

                pn = generate_polynomial(pn_degree, lons, lats) 

                avg_error, max_error = get_fn_error_rates(pn, lons, lats) 

  

                ​#print(f'p:{partition_num}, lower_bound:{lower_bound}, 

known_good:{known_good}, upper_bound:{upper_bound}, known_bad:{known_bad}, 

max_error:{max_error}') 

 

                ​# Partition width must be at least one more than the 

                ​#   degree of polynomial. 

                ​if​ ((known_bad - known_good) == ​1​) ​or​ (known_good > known_bad): 

                    upper_bound = known_good 

                    lons = s_lons[lower_bound:upper_bound] 

                    lats = s_lats[lower_bound:upper_bound] 

                    pn = generate_polynomial(pn_degree, lons, lats) 

                    avg_error, max_error = get_fn_error_rates(pn, lons, lats) 

                    ​break 

  

                ​# the partition may grow 

                ​if​ max_error <= error_threshold: 

                    known_good = upper_bound 

                    maybe_increment = ​int​((known_bad - upper_bound) / ​2​) 

                    ​if​ maybe_increment > max_increments[max_inc_idx]: 

                        increment = max_increments[max_inc_idx] 

                        max_inc_idx += ​1 

                        ​if​ max_inc_idx >= ​len​(max_increments): 

                            max_inc_idx = ​len​(max_increments) - ​1 



                    ​else​: 

                        increment = maybe_increment 

                    upper_bound = upper_bound + increment 

                    ​if​ upper_bound == known_good: 

                        upper_bound += ​1 

                ​# the partition must shrink 

                ​else​: 

                    known_bad = upper_bound 

                    upper_bound = upper_bound - ​int​((known_bad - known_good) / ​2​) 

                    ​if​ upper_bound == known_bad: 

                        upper_bound -= ​1 

                    max_inc_idx = ​0 

  

            lon_min = s_lons[lower_bound] 

            lon_max = s_lons[upper_bound] 

  

            partition = {​'left_extent'​: lower_bound, 

                         ​'right_extent'​: upper_bound, 

                         ​'pn'​: ​tuple​(pn.c), 

                         ​'lon_min'​: lon_min, 

                         ​'lon_max'​: lon_max, 

                         ​'max_error'​: max_error, 

                         ​'avg_error'​: avg_error} 

 

            ​# compute bounding box for current partition 

            partition = apply_partition_latitudes(partition) 

 

            results.append(partition) 

 

            lower_bound = upper_bound + ​1 

            upper_bound = lower_bound + pn_degree + ​1 

            known_good = lower_bound + pn_degree + ​1 

            known_bad = ​len​(s_lons) 

 

            ​#partition_num += 1 

 

    ​# Sort partitions by longitude. This will introduce a gap in the data if 

    ​#   the orbit passes through the anti-meridian (which happens most of the 

    ​#   time). It's not a problem for the search but it's worth knowing it's 

    ​#   there. Makes the data binary search compatible on a per granule or 

    ​#   orbit basis. 

    ​return​ ​sorted​(results, ​key​=​lambda​ ​x​: x[​'lon_min'​]) 

 



 

def​ ​filter_invalid_coords​(​lons_​, ​lats_​): 

    ​""" Takes an array of longitude values lons_ and an array of latitude 

        values lats_ and returns a copy of each with invalid with invalid 

        point data removed. """ 

    lons = deepcopy(lons_) 

    lats = deepcopy(lats_) 

    ​for​ i ​in​ ​range​(​len​(lons)-​1​, ​0​, -​1​): 

        ​if​ (lons[i] < -​180​) ​or​ (lons[i] > ​180​) ​or​ math.isnan(lons[i]) \ 

          ​or​ (lats[i] < -​90​) ​or​ (lats[i] > ​90​) ​or​ math.isnan(lats[i]): 

            ​print​(​f​'Bad data removed at index ​{​i​}​: ​{​lons[i]​}​, ​{​lats[i]​}​'​) 

            ​del​ lons[i] 

            ​del​ lats[i] 

    ​return​ lons, lats 

 

 

def​ ​do​(​input_filenames​, ​input_path​, ​output_path​): 

    ​for​ input_filename ​in​ input_filenames: 

        ​print​(​'​\n​'​ + input_filename) 

        ​with​ ​open​(input_path + input_filename) ​as​ coords: 

 

            coords_json = json.load(coords) 

 

            ​# Check for valid data; without this check I was receiving the 

            ​#   following error on some files: "ValueError: On entry to DLASCL 

            ​#   parameter number 4 had an illegal value". Turns out there are 

            ​#   some NaN's in GEDI coordinate data. 

            lons, lats = filter_invalid_coords(coords_json[​'lons'​], 

                                               coords_json[​'lats'​]) 

 

            partitions = create_dynamic_partitions(lons, lats) 

 

            ​with​ ​open​(output_path + input_filename + ​'.json'​, ​'w'​) ​as​ output_file:  

                json.dump(partitions, output_file) 

 

 

if​ ​__name__​ == ​'__main__'​: 

    start_time = time.time() 

  

    ​with​ Pool(multiprocessing.cpu_count()) ​as​ p: 

       p.starmap(do, [[[x], input_path, OUTPUT_PATH] ​for​ x ​in 

(get_filenames(INPUT_PATH))]) 

 



    ​print​(​'Total time taken: ​{0:.3f}​ seconds'​.format(time.time() - start_time)) 

 

 
And here is some sample output which may help in understanding some of what it does: 
 
GEDI01_B_2019108002011_O01959_T03909_02_003_01 

p:1, lower_bound:0, known_good:8, upper_bound:8, known_bad:496607, 

max_error:7.589719382119511e-06 

p:1, lower_bound:0, known_good:8, upper_bound:108, known_bad:496607, 

max_error:0.00013878764480470632 

p:1, lower_bound:0, known_good:108, upper_bound:1108, known_bad:496607, 

max_error:0.0011892317332065987 

p:1, lower_bound:0, known_good:1108, upper_bound:21108, known_bad:496607, 

max_error:0.027517041144147266 

p:1, lower_bound:0, known_good:21108, upper_bound:41108, known_bad:496607, 

max_error:0.03017484874312236 

p:1, lower_bound:0, known_good:21108, upper_bound:31108, known_bad:41108, 

max_error:0.027939061828534333 

p:1, lower_bound:0, known_good:31108, upper_bound:31208, known_bad:41108, 

max_error:0.02796734990838053 

p:1, lower_bound:0, known_good:31208, upper_bound:32208, known_bad:41108, 

max_error:0.028312941969671275 

p:1, lower_bound:0, known_good:32208, upper_bound:36658, known_bad:41108, 

max_error:0.030076797456290955 

p:1, lower_bound:0, known_good:32208, upper_bound:34433, known_bad:36658, 

max_error:0.02938518122491594 

p:1, lower_bound:0, known_good:34433, upper_bound:34533, known_bad:36658, 

max_error:0.029478135143909876 

p:1, lower_bound:0, known_good:34533, upper_bound:35533, known_bad:36658, 

max_error:0.030125655634307472 

p:1, lower_bound:0, known_good:34533, upper_bound:35033, known_bad:35533, 

max_error:0.02980586985488824 

p:1, lower_bound:0, known_good:35033, upper_bound:35133, known_bad:35533, 

max_error:0.02988107715667559 

p:1, lower_bound:0, known_good:35133, upper_bound:35333, known_bad:35533, 

max_error:0.030029824399015387 

p:1, lower_bound:0, known_good:35133, upper_bound:35233, known_bad:35333, 

max_error:0.029957015041170522 

p:1, lower_bound:0, known_good:35233, upper_bound:35283, known_bad:35333, 

max_error:0.029994421261588314 

p:1, lower_bound:0, known_good:35283, upper_bound:35308, known_bad:35333, 

max_error:0.030012615469099238 

p:1, lower_bound:0, known_good:35283, upper_bound:35296, known_bad:35308, 

max_error:0.030003960888411656 

p:1, lower_bound:0, known_good:35283, upper_bound:35290, known_bad:35296, 

max_error:0.029999573562684914 

p:1, lower_bound:0, known_good:35290, upper_bound:35293, known_bad:35296, 

max_error:0.030001771139518976 



p:1, lower_bound:0, known_good:35290, upper_bound:35292, known_bad:35293, 

max_error:0.03000103943413725 

p:1, lower_bound:0, known_good:35290, upper_bound:35291, known_bad:35292, 

max_error:0.03000030689072727 

p:1, lower_bound:0, known_good:35290, upper_bound:35290, known_bad:35291, 

max_error:0.029999573562684914 

p:2, lower_bound:35291, known_good:35299, upper_bound:35299, known_bad:496607, 

max_error:6.402811027698382e-08 

p:2, lower_bound:35291, known_good:35299, upper_bound:35399, known_bad:496607, 

max_error:3.712876595607178e-05 

p:2, lower_bound:35291, known_good:35399, upper_bound:36399, known_bad:496607, 

max_error:0.0009124606499388271 

p:2, lower_bound:35291, known_good:36399, upper_bound:56399, known_bad:496607, 

max_error:0.026815840995010092 

p:2, lower_bound:35291, known_good:56399, upper_bound:76399, known_bad:496607, 

max_error:0.02821008014045565 

p:2, lower_bound:35291, known_good:76399, upper_bound:96399, known_bad:496607, 

max_error:0.026437130476392765 

p:2, lower_bound:35291, known_good:96399, upper_bound:116399, known_bad:496607, 

max_error:0.02717588934470578 

... 

 
The first column starts with a repeating ‘p:1’ which indicates which partition the dynamic 
partitioner is currently making. For a given set of coordinates, if the error is too high it will 
shrink the coordinate range to a number between a known good range and a known bad 
range. If the error is too low it will do the opposite and increase the range. It proceeds back 
and forth until it reaches the longest range to fit the specified error threshold at which 
point it stores the partition information for later writing and continues to find the next 
partition, and so on, until it goes through all points of an orbit. The error calculation here is 
relatively slow but accurate to within millimeters. 
 
Here’s a graph from data generated by the code above for one granule (graph code not 
shown but it’s using D3js v5): 
 



 
Maximum error in Blue, Average error in yellow 

(It took 1754 seconds to generate the data for this graph - AMD Ryzen 9 3900X) 
 
Note that this graph shows maximum and average error rates over the same data as the 
previous graph and the axes here use the same linear scale and range. What has changed 
is the x-axis is now “number of data points” instead of “partition number”. The actual 
partition boundaries are not shown. 
 
We specified an error rate of 30 meters (0.030 km) fitting 7 degree polynomials and the 
code created partitions of varying widths in an attempt to keep each at or below 30 meters. 
Seeing the results on this chart is both heartening and puzzling - why is there still a 
deviation in accuracy greater than what we specified? This behavior can be seen across 
many of over 100 sample granules to which I fit polynomials. In fact, some granules were 
exceedingly problematic. The worst in the sample set had to have 9679 partitions to reach 
30 meter max error across most of its data. If the data we are fitting functions to were 
uniform then it should be reasonable to expect more uniform results. 

The Shape of GEDI Data, Part 1 
Let’s zoom in on some problem areas of different granules and see what’s going on. 
 





 



 
Some data have minor deviations, like small stair steps or an occasional point that’s almost 
on top of another one while other data deviate strongly from the main line. Why do they do 
this? Is the data valid? And the question most relevant to our work: Do we need to consider 
these data? Would an individual who uses our search want to include these outliers in their 
results? 
 
We know GEDI is a taskable satellite, meaning the instrument can be pointed as needed. 
Specifically, it has the ability to move up to 6 degrees latitude off nadir  so there will be 13

times when the instrument will be directed ‘off-path’. It’s best to assume data released by 
the GEDI team is vetted good data so we will account for it. 
 

Accuracy of Our Approach 
Over a sample month of data, May of 2019, I ran the dynamic partitioner with 7-degree 
polynomials and specified error thresholds of 30m, 20m, 10m, and 5m. Shown below is a 
histogram of achieved accuracy for each as well as other information that will help us 
evaluate the results. 
 

Polynomial Fit for Partitions of 30m (0.030 km) Specified Maximum Error 
 

 
 

13 ​https://gedi.umd.edu/instrument/instrument-overview/ 

https://gedi.umd.edu/instrument/instrument-overview/


Average, mean:  0.028216439662905695 km 

Average, median:  0.029954263344824216 km 

Max error for worst fitting polynomial:  0.6869073938382132 km 

Standard deviation or σ:  0.005039136508381175 km 

Percentage of data points at or less than specified error threshold:  99.937 % 

Percentage of data points above specified error threshold:  0.063 % 

Total number of partitions for sample month:  402,865 

Average partitions per granule:  943 

Most partitions for a granule:  9679 

Least partitions for a granule:  11 

Total size on disk for sample month (as JSON):  164 MB 

 

Polynomial Fit for Partitions of 20m (0.020 km) Specified Maximum Error 
 

 
 

Average, mean:  0.01888378813809257 km 

Average, median:  0.01996206643293634 km 

Max error for worst fitting polynomial:  0.6869073938382132 km 



Standard deviation or σ:  0.003850757467096522 km 

Percentage of data points at or less than specified error threshold:  99.908 % 

Percentage of data points above specified error threshold:  0.092 % 

Total number of partitions for sample month:  606,931 

Average partitions per granule:  1421 

Most partitions for a granule:  11,333 

Least partitions for a granule:  15 

Total size on disk for sample month (as JSON):  246 MB 

 

Polynomial Fit for Partitions of 10m (0.010 km) Specified Maximum Error 
 

 
 

Average, mean:  0.009420246194762704 km 

Average, median:  0.009966840586964055 km 

Max error for worst fitting polynomial:  0.6869073938382132 km 

Standard deviation or σ:  0.0030379619266287868 km 

Percentage of data points at or less than specified error threshold:  99.828 % 

Percentage of data points above specified error threshold:  0.172 % 



Total number of partitions for sample month:  1,077,172 

Average partitions per granule:  2523 

Most partitions for a granule:  15,982 

Least partitions for a granule:  27 

Total size on disk for sample month (as JSON):  436 MB 

 

Polynomial Fit for Partitions of 5m (0.005 km) Specified Maximum Error 
 

 
 

Average, mean:  0.00473401961305397 km 

Average, median:  0.004969986895258308 km 

Max error for worst fitting polynomial:  0.6869073938382132 km 

Standard deviation or σ:  0.0029390885193709146 km 

Percentage of data points at or less than specified error threshold:  99.784 % 

Percentage of data points above specified error threshold:  0.216 % 

Total number of partitions for sample month:  1,696,332 

Average partitions per granule:  3973 

Most partitions for a granule:  19,957 



Least partitions for a granule:  54 

Total size on disk for sample month (as JSON):  687 MB 

 
 
These stats demonstrate strong and consistent results from our dynamic partitioning code. 
For example, to put 5 m of specified error (above and below) into perspective, it increases 
our calculated swath footprint by only 0.237% or less over GEDI’s actual swath and this is 
the case for over 99.828% of our sample. 
 
Notice that we didn’t test a specified error threshold below 5 meters. While it would be 
possible to do so, the accuracy probably isn’t necessary for this application and we’ll soon 
see the error introduced by using spherical trigonometry (versus ellipsoid) can be a fair 
amount larger (2x to 4x). Conversely, having some ‘extra slack’ in the fit may actually end up 
being a desirable feature. A scientist may want to include all granules which have data that 
intersect their AOI as well as any granules which are in very close proximity. As we’ve now 
demonstrated, a wide range of specified error thresholds may be used with corresponding 
memory tradeoffs. The search run-time differences will be covered soon. 
 

The Shape of GEDI Data, Part 2 
Before detailing the search process we should dig deeper into the differences between our 
search model vs. the actual shape of GEDI data. As stated previously, we're using lon/lat 
coordinates from beam 0110 (6) to fit our polynomials. One of the first steps in the search 
process will be to see if the bounding box of a partition intersects the bounding box 
containing the user-supplied AOI. That means we’ll need to develop a way to include the 
entire swath path, from the first track to the last, in our bounding box. 
 



 
 
The swath width is 4200m + (half the width of the first beam) + (half the width of the last 
beam) = 4225m. The distance from beam 6 to beam 0 will always be 3012.5m and the 
distance from beam 6 to beam “8” will always be 1212.5m. The pitfall in accounting for all of 
the beams based on beam 6 is that our polynomials can only tell us a distance in latitude 
perpendicular to the equator but our known distances are perpendicular to the path of a 
GEDI orbit. We need to find a way to take track 6, add the due north distance to track 0 as 
well as the due south distance to track “8”. If we were to simply add the constant 
perpendicular-to-slope distance then our estimated bounding box would be inaccurate 
proportional to the slope of the orbit at that longitude. 
 

 
E.g. to find the latitudinal distance between track 6 and track 0 we must find the distance labelled “unknown” 
above. 
 



Thankfully there’s math that can take our ‘known’ and the slope of the data path to derive 
the ‘unknown’. 
 

The earth is slightly larger around the equator than it is pole-to-pole. Because of this the 
earth, like other planets, is called an ‘oblate spheroid’ . The difference in the earth’s 14

radius at the equator vs. the north or south pole is about 21.385km. We’ll be using 
spherical trigonometry which treats the earth as a perfect sphere; it’s more accurate than 
euclidean equations but slightly less accurate than ellipsoid  geodesics . 15 16

 
The first step is to translate our constant distance into degrees of arc length: The distance 
from the northernmost swath edge to track 6 perpendicular to the orbit is 3.0125 km and 
the constant distance we’ll use for 1 degree latitude is 110.5743 km . 17

 
The perpendicular distance between tracks 0000 and 0110 is 3.0125 km. Therefore 0110 to 
0000 arc length is 3.6125 km / 110.5743 km or 0.027244… degrees. 
 
Next, we need to know the orbital slope. This can be accomplished by taking a fitted 
polynomial’s first derivative  and supplying a longitude to get a slope value at that location. 18

We then take the arctangent or inverse tangent of the slope to find the slope angle. This 
value is commonly called ‘theta’: 
 

 
 
To find the latitudinal distance (the hypotenuse in the above right spherical triangle) we’ll 
use trigonometry based on Napier’s Rules for right spherical triangles . The diagram below 19

14 ​https://en.wikipedia.org/wiki/Spheroid#Oblate_spheroids 
15 ​https://en.wikipedia.org/wiki/Earth_ellipsoid 
16 ​https://en.wikipedia.org/wiki/Geodesics_on_an_ellipsoid 
17 ​https://calgary.rasc.ca/latlong.htm 
18 ​https://docs.scipy.org/doc/scipy/reference/generated/scipy.misc.derivative.html 
19 ​https://en.wikipedia.org/wiki/Spherical_trigonometry 

https://en.wikipedia.org/wiki/Spheroid#Oblate_spheroids
https://en.wikipedia.org/wiki/Earth_ellipsoid
https://en.wikipedia.org/wiki/Geodesics_on_an_ellipsoid
https://calgary.rasc.ca/latlong.htm
https://docs.scipy.org/doc/scipy/reference/generated/scipy.misc.derivative.html
https://en.wikipedia.org/wiki/Spherical_trigonometry


has been marked up with traditional designations for each angle and side as well as which 
angles are equivalent. The capital letters are angles and the lower-case letters sides. 
 

 
 
Based on theta, which is also ‘B’, and the known distance ‘a’, we can solve for ‘c’. For the 
sake of demonstrating an example solution let’s set the value of theta or B to 1 degree 
which would make ‘a’ very nearly equal to ‘c’. 
 



 
 



Also note that we can use the same formula for distances both above and below track 6 as 
the angles and distances are mirror opposites. And these are just the details for a positive 
slope - if the slope is negative then we’ll apply a different formula. In the drawings below, 
positive slope is demonstrated on the left and negative slope is demonstrated on the right. 
 

 
 

Accuracy Notes 
By using spherical geometry to solve for our distances we gain simplicity and speed at the 
cost of accuracy. “Big Circle” calculations are about 0.3% less accurate than the 
millimeters-level accuracy of ellipsoid formulae from e.g. Vincenty . For our purposes, that 20

20 
https://community.esri.com/groups/coordinate-reference-systems/blog/2017/10/11/vincenty-formul
a 

https://community.esri.com/groups/coordinate-reference-systems/blog/2017/10/11/vincenty-formula
https://community.esri.com/groups/coordinate-reference-systems/blog/2017/10/11/vincenty-formula


loss of accuracy is, again, proportional to the slope of GEDI’s orbit at a given longitude. 
Specifically the vertical distance above track 6 will range from 3.0125 km at a 0 degree 
slope to 4.6866 km at a 50 degree slope. That means across an orbit the additional error 
will range from 9 m to 15 m above track 6 and 3.6 m to 6 m below. When accounting for the 
total accuracy of our solution we need to add a static factor of 1.003 (0.3 %) to our 
calculated swath path which will then naturally vary the amount of total error as needed. 
 

What We’ve Discovered So Far 
We’ve learned about GEDI’s tracks, which one is geo-located and how the others are a 
known distance away from each other. The first and last track define the extent of the 
swath width or path. We’ve determined polynomials can very accurately fit GEDI’s orbital 
path within a specified and configurable distance and that the distance guides the number 
of times a GEDI orbit must be partitioned. 
 
We’re almost done with our pre-search code - we’ll cover the last piece we need under the 
Search section, which is next, because it helps to first understand the Search algorithm. 
This is the order in which I discovered it as well - realizing how the search works makes it 
clear what we need to write next. 

Search 
 
The heart of the search process is the ability to take an AOI bounding box and know if it 
intersects the swath extent. Our polynomial values won’t be used in the search directly but 
rather used to calculate this extent. While we haven’t been overly concerned with 
performance so far, code for these steps should now be as fast as possible. 
 
We’ve touched on bounding boxes a number of times already and they’re a commonly 
used approximation for more complex shapes. Calculating bounding box intersection, 
shown later, is also very fast code to run so it’s probably best to use bounding box 
intersection detection as far as we can in order to minimize more computationally 
expensive steps. 
 
How then do we make a final determination for swath/AOI intersection? There’s complex 
math that can figure it out for us, for example ​here​, or if we zoom in far enough on our 
polynomial or generalize it maybe we could treat it as a straight line and use Rotational 
Directions or other methods demonstrated ​here​. 
 
As I was drawing bounding boxes around polynomials I realized we can achieve true swath 
intersection detection with bounding boxes alone so long as we take the set intersection of 

https://www.mathworks.com/matlabcentral/fileexchange/11837-fast-and-robust-curve-intersections
https://stackoverflow.com/questions/9043805/test-if-two-lines-intersect-javascript-function/16725715#16725715


longitude values between the AOI bounding box and a polynomial bounding box and then 
follow-up with latitude overlap detection: 
 

 
(The AOI bounding box is in blue and the bounding box based on the set intersection of longitude 

values of AOI and polynomial is in red) 
 
In other words, to find our longitude range we would: 
 

1. take the greater of: the minimum longitude of the AOI bounding box vs. the 
minimum longitude of the current partition 

2. take the the lesser of: the maximum longitude of the AOI bounding box vs. the 
maximum longitude of the current partition 

  
Then, if the latitude ranges for each bounding box (AOI and current partition’s swath width) 
overlap we know there’s a search hit between the AOI and the granule the partition 
belongs to; no difficult or long-running math required. That makes our search 
turtles-and-bounding-boxes all the way down! (minus the turtles). 
 



Inflections 
And this is where we revisit the last piece of preparation required. Alongside the dynamic 
partitioning code, similar to what we did with anti-meridian splitting, we must include 
something that will cause a partition split along an orbital path inflection , i.e. the tops and 21

bottoms for each orbit. We can have true swath intersection detection by checking for 
overlapping latitudes at the extremes of common longitudes so long as the polynomial’s 
slope doesn’t change sign over the common longitudinal range. If we didn’t split at 
inflections, notice how the intersection detection described above would fail in this 
example: 
 

 
(The AOI bounding box is in blue.  In order to find the upper extent of this polynomial we would e.g. 

need to find the inflection point.) 
 
We know GEDI's orbit will only have inflections at its extremes of latitude. Our search is 
going to happen one partition at a time so we can avoid inflections in our search process by 
splitting partitions at an inflection point, if they have one. 
 
So - how do we detect for inflections and find inflections points? Because the raw 
geo-located GEDI data is available to us my initial approach was to go back to that - the 
source. Some example ideas included: 
 

● Take the latitude absolute values, filter for those above 51.4 degrees, add up sample 
ranges and find the one which has the highest value. Then, take the midpoint as the 
inflection point. 

● Total the inter-point slope across ranges and find the midpoint of the least 
● Create arrays over a predetermined width which collect whether point i < i + 1 and 

assign -1 or 1. Then take the array that has a value closest to 0 and use the midpoint 
as the inflection point. 

 

21 ​https://en.wikipedia.org/wiki/Inflection_point 
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I think I had other ideas but none were very good. All of these ideas were a programmatic 
hassle because GEDI can have irregular data. Jittery data might cause us to label local 
maxima or minima as whole orbit inflections so I decided to go back to regression which, of 
course, is regularly used to generalize data such as this. 
 
My initial approach was to solve for longitude where the first derivative of each polynomial 
equaled zero but once again there is a python library to help us out: scipy.optimize . It has 22

the 'minimize' function which can find the lowest value in a polynomial using a variety of 
algorithms. For our purposes we need to find the minimum and maximum over a given 
range but scipy.optimize doesn't offer a 'maximize' function. To get around that we can 
either invert the sign of our inputs (longitude) or multiply the polynomial coefficients by -1, 
either of which would invert the polynomial and allow us to use 'minimize' to find a 
maximum. 
 
 

def​ ​_split_on_inflections​(​lons​, ​lats​, ​pn_degree​): 

    ​# A low degree polynomial will be less prone to fitting local maxima. 

    ​# We're optimizing over a path which is convex and smooth. 

    inf_pn_degree = ​3 

    lats_peak_threshold = ​51.4 

    skip_amount = ​250000 

    inflection_threshold = ​1e-6 

    abs_lats = np.abs(lats) 

    equatorial_markers = [] 

    inflection_indices = [] 

 

    ​# assemble a list of equatorial markers  

    search = ​True 

    left_boundary = ​0 

    ​while​ search: 

        search = ​False 

        ​for​ i ​in​ ​range​(left_boundary, ​len​(abs_lats)): 

            ​if​ ​0​ < abs_lats[i] < ​1​: 

                equatorial_markers.append(i) 

                left_boundary = i + skip_amount 

                ​if​ left_boundary < ​len​(abs_lats): 

                    search = ​True 

                ​break 

 

    ​# add beginning and end indices to equatorial markers 

    markers = [​0​, *equatorial_markers, ​len​(lons) - ​1​] 

22 ​https://docs.scipy.org/doc/scipy/reference/optimize.html 
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    ​# Determine if there are any inflection points 

    ​for​ marker_index ​in​ ​range​(​1​, ​len​(markers)): 

        left_boundary = markers[marker_index-​1​] 

        right_boundary = markers[marker_index] 

  

        ​# Determine possible inflection range 

        peak_indices = ​None 

        ​for​ i ​in​ ​range​(left_boundary, right_boundary): 

            ​if​ abs_lats[i] > lats_peak_threshold: 

                ​for​ ii ​in​ ​range​(i, right_boundary): 

                    ​if​ abs_lats[ii] < lats_peak_threshold: 

                        peak_indices = [i, ii] 

                        ​break 

                ​if​ ​not​ peak_indices: 

                    peak_indices = [i, right_boundary - ​1​] 

                ​break 

  

        ​if​ peak_indices: 

            x1, x2 = peak_indices 

            ​# Fit a function and test for inflection point 

            pn = generate_polynomial(inf_pn_degree, lons[x1:x2], abs_lats[x1:x2]) 

            ​# Need to take the inverse of the fitted function because 

            ​#   scipy.optimize doesn't have 'maximize' 

            pn_inverse = np.poly1d([x * -​1​ ​for​ x ​in​ pn]) 

            opt = minimize(pn_inverse, ​x0​=lons[x1], ​bounds​=[[lons[x1], lons[x2]]]) 

            ​if​ opt.success: 

                lon_min = opt.x[​0​] 

                z = inflection_threshold 

                ​# If polynomial max value isn't located at either end of our range 

then 

                ​#   an inflection point has been found 

                ​if​ (​abs​(lon_min - lons[x1]) > z) ​and​ (​abs​(lon_min - lons[x2]) > z): 

                    ​# find the offset value based on inflection point 

                    inflection_indices.append(bisect(lons, lon_min)) 

  

    ​# split up lons and lats according to inflection_indices 

    ​if​ inflection_indices: 

        final_indices_ = [​0​, *inflection_indices, ​len​(lons) - ​1​] 

        final_indices = [] 

        ​# Discard split at inflection if it is too small for us to fit a 

        ​#   polynomial function 

        ​for​ i ​in​ ​range​(​1​, ​len​(final_indices_)): 



            ​if​ (final_indices_[i] - final_indices_[i-​1​]) > pn_degree: 

                final_indices.append(final_indices_[i-​1​]) 

        final_indices.append(final_indices_[-​1​]) 

 

        result_lons = [] 

        result_lats = [] 

        ​for​ i ​in​ ​range​(​1​, ​len​(final_indices)): 

            left_boundary = final_indices[i-​1​] 

            right_boundary = final_indices[i] 

            result_lons.append(lons[left_boundary:right_boundary]) 

            result_lats.append(lats[left_boundary:right_boundary]) 

        ​return​ result_lons, result_lats 

    ​else​: 

        ​return​ [lons], [lats] 

 

 

def​ ​split_on_inflections​(​lons​, ​lats​, ​pn_degree​): 

    ​""" Find the inflections through the anti-meridian halves of a GEDI 

        orbit. Takes an array of arrays of longitude values lons, and array 

        of arrays of latitude values lats, and the degree of polynomial to 

        use to find inflections and returns an array of arrays of longitude 

        and latitude values. """ 

    acc_lons = [] 

    acc_lats = [] 

    ​for​ lons_, lats_ ​in​ ​zip​(lons, lats): 

        lons_parts, lats_parts = _split_on_inflections(lons_, lats_, pn_degree) 

        acc_lons.extend(lons_parts) 

        acc_lats.extend(lats_parts) 

    ​return​ acc_lons, acc_lats 

 

 

Search Algorithm 
Here’s an outline for the search: 
 

- Take a user-supplied AOI bounding box 
- For each granule: 

- Check that the AOI bbox intersects the granule bbox 
- Perform a binary search (bisect function) over the granule’s partitions to see 

where we need to start looking. 
- Loop over partitions from the index indicated in the binary search until a 

partition is entirely outside of the range of the AOI. 



- Check if the AOI intersects the partition bbox 
- Check for swath overlap based on longitudinal set intersection 

and latitude overlap between partition latitude extremes and 
AOI latitude extremes. 

 
As soon as we receive a ‘hit’ on any of a granule’s partitions we may record that granule as 
having relevant data to the AOI and may stop further searching within that granule. 
 
Because we’ve stored each granule’s partitions in sorted order we can perform a binary 
search  to discover the starting point for partition bounding box detection. This will be 23

faster than starting at the beginning and testing each one; such a strategy would on 
average find a starting point after N/2 comparisons where N is the number of partitions. A 
binary search, however, will average log2(N). For example let's say an orbit contains 1000 
partitions: searching from the beginning means averaging 500 tests for a left-most match 
whereas a binary search will average 10 tests. 
 

Search Code 
The search code comes in two major sections - loading the data into memory and then 
performing the actual search. In a production environment, e.g. for a web service, this 
prototype would be loaded once and then left to run searches for a period of time because 
loading the data can be slow as detailed in the table below. 

What is NumPy? 
If you’re not familiar with NumPy , it’s a Python library that primarily deals in arrays and 24

mathematical functions. Part of it is written in C and compiled to machine code which 
allows it to perform operations outside of the python interpreter . 25

What is Numba? 
Numba “is an open source JIT compiler that translates a subset of Python and NumPy code 
into fast machine code.”  Many performance critical libraries like NumPy are compiled for 26

speed but writing one’s own code in the same way usually requires at least two different 
programming ecosystems. An advantage Numba offers is its ability to take code which can 
run under the Python interpreter and compile some or all of it into native machine code via 
the LLVM compiler, all without a change in the programming ecosystem. The very large 
caveat is you’ll be restricted from using any third party libraries, directly or transitively, that 
aren’t pure Python. Also, not all Python or NumPy is supported by Numba. The compiler 

23 ​https://en.wikipedia.org/wiki/Binary_search_algorithm 
24 ​https://numpy.org/doc/stable/user/whatisnumpy.html 
25 ​https://stackoverflow.com/questions/8385602/why-are-numpy-arrays-so-fast 
26 ​http://numba.pydata.org/ 
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features are leveraged with a @jit python decorator and in our code we’re supplying 
keyword args ​nopython, nogil, ​and ​parallel​. 
 
There are three files that make up the search: search.py, shared.py, and polyder.py and 
they are listed in that order below: 
 
 
search.py 
import​ json 

import​ numpy ​as​ np 

from​ numba ​import​ jit, prange, int8, float64, int64, void 

import​ random 

from​ time ​import​ sleep 

from​ timeit ​import​ default_timer ​as​ timer 

 

import​ settings 

from​ shared ​import​ bbox_intersect, get_filenames, is_overlap_sorted_values, poly_bbox 

 

 

INPUT_PATH = settings.PARTITIONS_05M_PATH 

 

# partitions: [('granules_idx'), ('polynomial', (8)), ('bbox', (4)), ('max_error')] == 

14 wide 

PARTITIONS_WIDTH = ​14 

GRANULES_IDX = ​0 

POLYNOMIAL_BEGIN = ​1 

POLYNOMIAL_END = ​9 

P_BBOX_BEGIN = ​9 

P_BBOX_END = ​13 

MAX_ERROR = ​13 

# granules:   [('bbox', (4)), ('partitions_offset_left'), ('partitions_offset_right')] 

== 6 wide 

GRANULES_WIDTH = ​6 

G_BBOX_BEGIN = ​0 

G_BBOX_END = ​4 

PARTITIONS_OFFSET_LEFT = ​4 

PARTITIONS_OFFSET_RIGHT = ​5 

 

 

def​ ​_orbit_bbox​(​partitions​): 

    ​""" Takes a granule's partitions 'partitions' and returns the bounding box 

        containing all of them. Bounding box is ll, ur format 

        [[lon, lat], [lon, lat]]. """ 



    lon_min = partitions[​0​][​'lon_min'​] 

    lat_min = partitions[​0​][​'lat_min'​] 

    lon_max = partitions[​0​][​'lon_max'​] 

    lat_max = partitions[​0​][​'lat_max'​] 

    ​for​ p ​in​ partitions[​1​:]: 

        ​if​ p[​'lon_min'​] < lon_min: 

            lon_min = p[​'lon_min'​] 

        ​if​ p[​'lat_min'​] < lat_min: 

            lat_min = p[​'lat_min'​] 

        ​if​ p[​'lon_max'​] > lon_max: 

            lon_max = p[​'lon_max'​] 

        ​if​ p[​'lat_max'​] > lat_max: 

            lat_max = p[​'lat_max'​] 

    ​return​ [[lon_min, lat_min], [lon_max, lat_max]] 

 

 

def​ ​load_data​(​input_path​): 

    ​""" Takes a filesystem path input_path and returns a tuple of 

        (urls, granules, partitions, partitions_lons_max, min_lat, 

        max_lat). """ 

    ​# ​NOTE​: simulating two years of data with 1 month repeated 

    dataset_multiplier = ​24 

 

    ​# Determine the dimensions of ndarrays 

    filenames = get_filenames(input_path) 

    granules_count = ​0 

    partitions_count = ​0 

    ​for​ f ​in​ filenames: 

        granules_count += ​1 

        ​with​ ​open​(input_path + f) ​as​ g: 

            partitions_count += ​len​(json.load(g)) 

  

    granules_count = granules_count * dataset_multiplier 

    partitions_count = partitions_count * dataset_multiplier 

  

    ​# Create ndarrays 

    partitions = np.zeros((partitions_count, PARTITIONS_WIDTH)) 

    granules = np.zeros((granules_count, GRANULES_WIDTH)) 

 

    ​# Populate data 

    urls = [] 

    partitions_lons_max = np.zeros((partitions_count)) 

    granules_idx = ​0 



    partitions_idx = ​0 

    ​for​ _ ​in​ ​range​(dataset_multiplier): 

        ​for​ f ​in​ filenames: 

            ​# append to list of urls 

            urls.append(​'https://placeholder.url/'​ + f) 

            ​# assign values to granule and partitions 

            ​with​ ​open​(input_path + f) ​as​ g: 

                partitions_json = json.load(g) 

            granules[granules_idx][PARTITIONS_OFFSET_LEFT] = partitions_idx 

            granules[granules_idx][PARTITIONS_OFFSET_RIGHT] = partitions_idx + 

len​(partitions_json) - ​1 

            ​for​ p ​in​ partitions_json: 

                ​# set all the values in this partition 

                partitions_view = partitions[partitions_idx] 

                partitions_view[GRANULES_IDX] = granules_idx 

                np.put(partitions_view, np.arange(POLYNOMIAL_BEGIN, POLYNOMIAL_END), 

tuple​(p[​'pn'​])) 

                np.put(partitions_view, np.arange(P_BBOX_BEGIN, P_BBOX_END), 

[p[​'lon_min'​], p[​'lat_min'​], p[​'lon_max'​], p[​'lat_max'​]]) 

                partitions_view[MAX_ERROR] = p[​'max_error'​] 

                ​# set a separate value for binary search 

                partitions_lons_max[partitions_idx] = p[​'lon_max'​] 

                ​# increment for the next partition 

                partitions_idx += ​1 

            np.put(granules[granules_idx], np.arange(G_BBOX_BEGIN, G_BBOX_END), 

np.array(_orbit_bbox(partitions_json)).flatten()) 

            granules_idx += ​1 

 

    ​# Find the minimum latitude and maximum latitude across all partitions 

    min_lat = ​0 

    max_lat = ​0 

    ​for​ i ​in​ ​range​(​0​, ​len​(granules)): 

        minl = (granules[i][G_BBOX_BEGIN:G_BBOX_END])[​1​] 

        maxl = (granules[i][G_BBOX_BEGIN:G_BBOX_END])[​3​] 

        ​if​ min_lat > minl: 

            min_lat = minl 

        ​if​ max_lat < maxl: 

            max_lat = maxl 

 

    ​return​ urls, granules, partitions, partitions_lons_max, min_lat, max_lat 

 

 

@jit 



def​ ​_search​(​granules_idx​, ​aoi_bbox​, ​granules​, ​partitions​, ​partitions_lons_max​, 

matched_granules​): 

    aoi_lon_min = aoi_bbox[​0​][​0​] 

    aoi_lon_max = aoi_bbox[​1​][​0​] 

    aoi_lat_min = aoi_bbox[​0​][​1​] 

    aoi_lat_max = aoi_bbox[​1​][​1​] 

 

    g_bbox = (granules[granules_idx][G_BBOX_BEGIN:G_BBOX_END]).copy().reshape((​2​, ​2​)) 

  

    ​# Does aoi_bbox intersect this granule's bbox 

    ​if​ bbox_intersect(aoi_bbox, g_bbox): 

        left_idx = ​int​(​round​(granules[granules_idx][PARTITIONS_OFFSET_LEFT])) 

        right_idx = ​int​(​round​(granules[granules_idx][PARTITIONS_OFFSET_RIGHT] + ​1​)) 

        partitions_view = partitions[left_idx:right_idx] 

        partitions_lons_max_view = partitions_lons_max[left_idx:right_idx] 

        ​# Binary search on sorted values 

        start_idx = np.searchsorted(partitions_lons_max_view, aoi_lon_min) 

        ​# Iterate through relevant partitions 

        ​for​ i ​in​ ​range​(start_idx, right_idx+​1​): 

            ​# Check for longitude overlap. ​NOTE​: is_overlap_sorted_values is 

            ​#   not used here because NaN raw data values can cause partition 

            ​#   splits resulting in a premature end to this loop if we were 

            ​#   to use that function. 

            p_lon_min = (partitions_view[i][P_BBOX_BEGIN:P_BBOX_END])[​0​] 

            ​if​ aoi_lon_max > p_lon_min: 

                ​# Check for whole partition bbox overlap with aoi_bbox 

                p_bbox = 

(partitions_view[i][P_BBOX_BEGIN:P_BBOX_END]).copy().reshape((​2​, ​2​)) 

                ​if​ bbox_intersect(p_bbox, aoi_bbox): 

                    ​# Check for specific calculated swath overlap. Generate a 

                    ​# bounding box for the polynomial that is: 

                    ​#  - the greater of aoi_lon_min, p_lon_min 

                    ​#  - the lesser of aoi_lon_max, p_lon_max 

                    ​# p_g_ is short for polynomial, generated 

                    p_lon_max = (partitions_view[i][P_BBOX_BEGIN:P_BBOX_END])[​2​] 

                    p_g_lon_min = aoi_lon_min ​if​ aoi_lon_min > p_lon_min ​else 

p_lon_min 

                    p_g_lon_max = aoi_lon_max ​if​ aoi_lon_max < p_lon_max ​else 

p_lon_max 

                    p_g_bbox = 

poly_bbox(partitions_view[i][POLYNOMIAL_BEGIN:POLYNOMIAL_END], p_g_lon_min, 

p_g_lon_max, partitions_view[i][MAX_ERROR]) 

 



                    ​# We know specific longitudes of each bbox overlap; now 

                    ​#   detect specific latitude overlap. 

                    p_g_lat_min = p_g_bbox[​0​][​1​] 

                    p_g_lat_max = p_g_bbox[​1​][​1​] 

                    ​if​ is_overlap_sorted_values(p_g_lat_min, p_g_lat_max, aoi_lat_min, 

aoi_lat_max): 

                        ​# aoi_bbox and partition overlap; update matched_granules and 

end search for this granule 

                        matched_granules[granules_idx] = ​True 

                        ​break 

            ​else​: 

                ​break 

 

 

@jit​(​nopython​=​True​, ​nogil​=​True​, ​parallel​=​True​) 

def​ ​search​(​aoi_bbox​, ​granules​, ​partitions​, ​partitions_lons_max​, ​granules_bbox​): 

    ​# An array that will have each element set to 1 according to each granule 

    ​#   that matches a given aoi_bbox. 

    matched_granules = np.zeros(​len​(granules), ​dtype​=np.bool_) 

 

    ​# Verify the aoi_bbox is within at least one of the granules_bbox 

    ​if​ bbox_intersect(aoi_bbox, granules_bbox): 

        ​# parallel processing across granules 

        ​for​ granules_idx ​in​ prange(​len​(granules)): 

            _search(granules_idx, aoi_bbox, granules, partitions, partitions_lons_max, 

matched_granules) 

 

    ​return​ np.nonzero(matched_granules)[​0​] 

 

 

def​ ​granules_to_urls​(​granules_idxs​, ​urls​): 

    ​""" Takes an array of granules indexes granules_idx and urls array 'urls' 

        and returns a list of urls that correspond to the indices. """ 

    results = [] 

    ​for​ idx ​in​ granules_idxs: 

        results.append(urls[idx]) 

    ​return​ results 

 

 

def​ ​random_bbox​(): 

    ​""" Returns random bbox around part of the amazon (roughly) in ll, ur 

        format [[lon, lat], [lon, lat]]. """ 

    lons_fn = ​lambda​: random.uniform(-​74.0​, -​70​) 



    lats_fn = ​lambda​: random.uniform(​1.1​, ​3.9​) 

    lons = ​sorted​((lons_fn(), lons_fn())) 

    lats = ​sorted​((lats_fn(), lats_fn())) 

    ​return​ np.array([[lons[​0​], lats[​0​]], [lons[​1​], lats[​1​]]]) 

 

 

def​ ​benchmark​(): 

    test_bboxes = [np.array([[-​74.1​, ​3.1​], [-​73.7​, ​3.3​]]), 

                   np.array([[-​74.1​, ​2.9​], [-​73.3​, ​3.3​]]), 

                   np.array([[-​74.1​, ​2.7​], [-​72.9​, ​3.3​]]), 

                   np.array([[-​74.1​, ​2.5​], [-​72.5​, ​3.3​]]), 

                   np.array([[-​74.1​, ​2.3​], [-​72.1​, ​3.3​]]), 

                   np.array([[-​74.1​, ​2.1​], [-​71.7​, ​3.3​]]), 

                   np.array([[-​74.1​, ​1.9​], [-​71.3​, ​3.3​]]), 

                   np.array([[-​74.1​, ​1.7​], [-​70.9​, ​3.3​]]), 

                   np.array([[-​74.1​, ​1.5​], [-​70.5​, ​3.3​]]), 

                   np.array([[-​74.1​, ​1.3​], [-​70.1​, ​3.3​]])] 

  

    rand_bboxes = [random_bbox() ​for​ _ ​in​ ​range​(​10​)] 

 

    ​# Load data 

    start_time = timer() 

    urls, granules, partitions, partitions_lons_max, min_lat, max_lat = 

load_data(INPUT_PATH) 

    end_time = timer() 

    ​print​(​'Load time: ​{0:.3f}​ seconds'​.format(end_time - start_time)) 

 

    sleep(​3​) 

 

    granules_bbox = np.array([[-​180.0​, min_lat], [​180.0​, max_lat]]) 

 

    ​# warm up for Numba and JIT 

    ​for​ _ ​in​ ​range​(​10​): 

        ​for​ t ​in​ test_bboxes: 

            granules_idxs = search(t, granules, partitions, partitions_lons_max, 

granules_bbox) 

 

    ​# establish search time  

    start_time = timer() 

    ​for​ b ​in​ rand_bboxes: 

        granules_idxs = search(b, granules, partitions, partitions_lons_max, 

granules_bbox) 

        granules_to_urls(granules_idxs, urls) 



    end_time = timer() 

    ​print​(​'Search time: ​{0:.9f}​ seconds'​.format((end_time - start_time) / 

len​(test_bboxes))) 

 

    ​# return URLs for a search 

    granules_idxs = search(test_bboxes[​0​], granules, partitions, partitions_lons_max, 

granules_bbox) 

    ​print​(​sorted​(granules_to_urls(granules_idxs, urls))) 

 

 

if​ ​__name__​ == ​"__main__"​: 

    benchmark() 

 

 
 
shared.py 
import​ math 

import​ os 

import​ numpy ​as​ np 

from​ numba ​import​ jit 

 

from​ polyder ​import​ polyder 

 

# one degree latitude distance in kilometers 

ODL_DISTANCE = ​110.5743 

# Factor in error introduced by spherical trigonometry 

STATIC_MULT = ​1.003 

# Distance from track 6 to 0 perpendicular to orbit 

PERPENDICULAR_ABOVE_DISTANCE = ​3.0125​  ​# in km 

# Distance from track 6 to 7 perpendicular to orbit 

PERPENDICULAR_BELOW_DISTANCE = ​1.2125​  ​# in km 

 

 

def​ ​get_filenames​(​path​): 

    ​""" Takes a filesystem path and returns a sorted list of filenames under 

        that path. """ 

    xs = [] 

    ​for​ (dirpath, dirnames, filenames) ​in​ os.walk(path): 

        xs.extend(filenames) 

        ​break 

    xs.sort() 

    ​return​ xs 

 



 

@jit 

def​ ​polyval​(​p​, ​x​): 

    ​""" Takes a sequence p representing a polynomial and a number x and 

        returns the value of p at x. This version is Numba-compatible; NumPy's 

        version is not. """ 

    val = ​0 

    ii = ​len​(p) - ​1 

    ​for​ i ​in​ ​range​(​len​(p) - ​1​): 

        val += p[i] * (x ** ii) 

        ii -= ​1 

    ​return​ val + p[-​1​] 

 

 

@jit 

def​ ​is_overlap_sorted_values​(​v1​, ​v2​, ​w1​, ​w2​): 

    ​""" Takes two pairs of values, v1, v2 and w1, w2 and returns a boolean 

        result indicating whether the range v1, v2 (inclusive) contains any 

        values in the range w1, w2 (inclusive). """ 

    ​if​ (v2 < w1) ​or​ (v1 > w2): 

        ​return​ ​False 

    ​else​: 

        ​return​ ​True 

 

 

@jit 

def​ ​bbox_intersect​(​a_ary​, ​b_ary​): 

    ​""" Takes two nested two dimensional arrays, a_ary and b_ary, 

        representing a bounding box in ll, ur format 

        [[lon, lat], [lon, lat]]. Returns a boolean result as to whether the 

        bounding boxes overlap. """ 

    ​# Do any of the 4 corners of one bbox lie inside the other bbox? 

    ​# bbox format of [ll, ur] 

    ​# bbx[0] is lower left 

    ​# bbx[1] is upper right 

    ​# bbx[0][0] is lower left longitude 

    ​# bbx[0][1] is lower left latitude 

    ​# bbx[1][0] is upper right longitude 

    ​# bbx[1][1] is upper right latitude 

 

    ​# Detect longitude and latitude overlap 

    ​if​ is_overlap_sorted_values(a_ary[​0​][​0​], a_ary[​1​][​0​], b_ary[​0​][​0​], b_ary[​1​][​0​]) \ 



            ​and​ is_overlap_sorted_values(a_ary[​0​][​1​], a_ary[​1​][​1​], b_ary[​0​][​1​], 

b_ary[​1​][​1​]): 

        ​return​ ​True 

    ​else​: 

        ​return​ ​False 

 

 

@jit 

def​ ​_deg_to_rad​(​deg​): 

    ​""" Takes a degree value deg and returns the equivalent value in 

        radians. """ 

    ​return​ deg * math.pi / ​180 

 

 

@jit 

def​ ​_rad_to_deg​(​rad​): 

    ​""" Takes a radian value rad and returns the equivalent value in 

        degrees. """ 

    ​return​ rad * ​180​ / math.pi 

 

 

@jit 

def​ ​_angle_from_slope​(​poly_ary​, ​lon​): 

    ​""" Takes a polynomial array poly_ary and a longitude value lon and 

        returns the angle in radians at that longitude. """ 

    ​# find the first derivative 

    poly = polyder(poly_ary, ​1​) 

    ​# get the slope at our point of interest 

    slope = polyval(poly, lon) 

    ​# get the angle from the slope 

    angle = math.atan(slope) 

    ​return​ angle  ​# in radians 

 

 

@jit 

def​ ​_slope_pos_vert_distance​(​B​, ​perp​): 

    ​""" Takes an acute angle B and distance in kilometers perp and returns the 

        distance perpendicular to the equator. Assumes an orbital section 

        positive in slope. """ 

    ​# get the arc length of 'a' at around this latitude 

    a = _deg_to_rad(perp / ODL_DISTANCE) 

    ​# arclength from beam 0110 to first or last beam vertically 

    arclength = math.atan(math.tan(a) / math.cos(B)) 



    ​# distance in km from beam 0110 to first or last vertically 

    beam_distance = _rad_to_deg(arclength) * ODL_DISTANCE 

    ​return​ beam_distance  ​# in km 

 

 

@jit 

def​ ​_slope_neg_vert_distance​(​B​, ​perp​): 

    ​""" Takes an acute angle B and distance in kilometers perp and returns the 

        distance perpendicular to the equator. Assumes an orbital section 

        negative in slope. """ 

    ​# get the arc length of 'a' at around this latitude 

    c = _deg_to_rad(perp / ODL_DISTANCE) 

    ​# arclength from beam 0110 to first or last beam vertically 

    arclength = math.atan(math.cos(B) * math.tan(c)) 

    ​# distance in km from beam 0110 to first or last vertically. 

    beam_distance = _rad_to_deg(arclength) * ODL_DISTANCE 

    ​return​ beam_distance  ​# in km 

 

 

@jit 

def​ ​poly_bbox​(​poly_ary​, ​lon_min​, ​lon_max​, ​max_error​): 

    ​""" Takes a polynomial array poly_ary, starting longitude lon_min, ending 

        longitude lon_max, and error distance max_error and returns a nested 

        array representing a bounding box for a GEDI swath extent. Return 

        value is in ll, ur format [[lon, lat], [lon, lat]]. """ 

    ​# Angle 'B' is also theta 

    B_lon_min = _angle_from_slope(poly_ary, lon_min) 

    B_lon_max = _angle_from_slope(poly_ary, lon_max) 

 

    ​# Slope assumptions: 

    ​# 1) will never be 0 at orbit major maximum or minimum 

    ​# 2) will never change sign because of #1 

    ​# Therefore, slopes are assumed continuously increasing or decreasing 

    slope_is_positive = ​True​ ​if​ B_lon_min > ​0​ ​else​ ​False 

 

    ​if​ slope_is_positive: 

        ​# lat min will be at min lon 

        lat_min_ = polyval(poly_ary, lon_min) 

        ​# lat max will be at max lon 

        lat_max_ = polyval(poly_ary, lon_max) 

 

        ​# find the latitudinal distance using rules for right spherical triangles 



        distance_below = _slope_pos_vert_distance(B_lon_min, 

PERPENDICULAR_BELOW_DISTANCE) 

        distance_above = _slope_pos_vert_distance(B_lon_max, 

PERPENDICULAR_ABOVE_DISTANCE) 

 

    ​else​:  ​# slope is negative 

        ​# lat min will be at max lon 

        lat_min_ = polyval(poly_ary, lon_max) 

        ​# lat max will be at min lon 

        lat_max_ = polyval(poly_ary, lon_min) 

  

        ​# find the latitudinal distance using rules for right spherical triangles 

        distance_below = _slope_neg_vert_distance(B_lon_min, 

PERPENDICULAR_BELOW_DISTANCE) 

        distance_above = _slope_neg_vert_distance(B_lon_max, 

PERPENDICULAR_ABOVE_DISTANCE) 

 

    ​# subtract distance from 0110 beam to 0111 beam 

    lat_min = lat_min_ - ((distance_below * STATIC_MULT) - max_error) / ODL_DISTANCE 

    ​# add distance from 0110 beam to 0000 beam 

    lat_max = lat_max_ + ((distance_above * STATIC_MULT) + max_error) / ODL_DISTANCE 

  

    ​# bbox format of [ll, ur] 

    bbox = np.array([[lon_min, lat_min], [lon_max, lat_max]]) 

 

    ​return​ bbox 

 

 
 
polyder.py 
import​ numpy.core.numeric ​as​ NX 

from​ numba ​import​ jit 

 

 

""" 

This code has been lifted and modified from NumPy and is licensed under 

a BSD 3-Clause "New" or "Revised" License. 

 

- - - - - 

 

Copyright (c) 2005-2020, NumPy Developers. 

All rights reserved. 

 



Redistribution and use in source and binary forms, with or without 

modification, are permitted provided that the following conditions are 

met: 

 

    * Redistributions of source code must retain the above copyright 

       notice, this list of conditions and the following disclaimer. 

 

    * Redistributions in binary form must reproduce the above 

       copyright notice, this list of conditions and the following 

       disclaimer in the documentation and/or other materials provided 

       with the distribution. 

 

    * Neither the name of the NumPy Developers nor the names of any 

       contributors may be used to endorse or promote products derived 

       from this software without specific prior written permission. 

 

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 

OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 

© 2020 GitHub, Inc. 

""" 

 

 

@jit 

def​ ​polyder​(​p​, ​m​=​1​): 

    ​""" Takes a numpy array p representing a polynomial and an integer m 

        representing the number of times to take the derivative m and returns 

        a numpy array representing a derivative of that polynomial. Note: 

        this implementation is Numba-compatible; the NumPy version is not. 

        Taken from NumPy. """  

    m = ​int​(m) 

    p = NX.asarray(p) 

    n = ​len​(p) - ​1 

    y = p[:-​1​] * NX.arange(n, ​0​, -​1​) 

    ​if​ m == ​0​: 



        val = p 

    ​else​: 

        val = polyder(y, m - ​1​) 

    ​return​ val 

 

 

Search Code, Explained 
 
The code in search.py is a little more obtuse than usual in order to make it compatible with 
Numba as well as to get some performance gains when or if Numba isn’t used. The data 
structures used and rationale behind them, in particular, should be addressed. 
 
Numba requires homogeneous arrays. NumPy also deals in homogeneous arrays but gets 
around mixed types by allowing for arrays of all scalars or all objects. Arrays of objects may 
point to arrays of scalars or of objects, and so on. In this way NumPy can support mixed 
types, irregular shaped arrays, and structured arrays (‘structs’). Numba can’t use object 
arrays because the preferred runtime modes ​nopython​ and ​nogil​ can’t use the python 
runtime to handle object manipulation. 
 

1. If we wish to store floats (doubles) then the whole array needs to be of that type 
2. If we use a multidimensional array then the contained arrays need to all be the 

same size and type 
 
The second constraint is the most problematic for us because, while the storage 
requirements for each partition are the same, the number of partitions per orbit is not. 
That and other shape irregularities preclude us from using multidimensional arrays for all 
of our data. 
 
A common way around this problem is to implement a multidimensional array the same 
way computers do - as one dimensional with all nested dimensions referenced by slice. We 
would then use one or more arrays to hold the offsets and lengths for each of the other 
dimensions. Lastly, we can store regularly-sized complex data structures based on constant 
offsets and ranges within the final array dimension. In our case we use one array for orbit 
and partition offsets and another array for all the partitions. 
 
The third array is a denormalized copy of partition longitudes but it’s there as a convenient 
and efficient way to bisect / binary search (vs. constructing something on-the-fly from 
normalized data). By using an additional array here we’re able to take advantage of 



additional performance through data locality  which translates to fewer requests to main 27

memory. 
 

 
 
We specified ​parallel​ as a Numba argument to the @jit decorator. It indicates our interest in 
leveraging explicit or implicit parallelism in our code. The Numba documentation has a 
more complete description of its capabilities but our code is using the explicit style via the 
prange​ function. Without the @jit decorator ​prange​ is interpreted by python the same as 
range​. However, with @jit(parallel) the compiler attempts to arrange execution in parallel 
map fashion. By default it fires up a number of threads equal to the system’s core count 
and splits work (in our case, searching orbits) among those threads. Our search process is 
an example of an “embarrassingly parallel”  problem and ​prange​ and other functions like it 28

were created to work on exactly those types of problems. 
 
One very important design consideration: how do we know this code is thread safe? By 
running our compiled python outside of the interpreter and the GIL  we leave behind both 29

the performance limitations and the protections afforded by CPython; we are at liberty to 
corrupt our data and must ensure thread safety through other means. 
 
The search code works with two main categories of data: the search arrays and the results 
array. The search arrays are built before searching occurs and thereafter are then 
read-only by convention (but not by requirement). Read-only data is always safe to use in 
concurrently running code. The results array requires a little more thought, however. We 
need to be able to take the results of a search and return the URLs for granules that match 
a user’s AOI. Concurrent access to mutable data requires some kind of coordination, 
specified either with concurrency primitives, thread-safe higher level data types, etc. or by 
some kind of logical separation and isolated mutation. The latter is typically faster and 
more elegant, where possible, and achieves safety by removing the concern of shared 
mutation instead of trying to manage it. 
We can do this with the results array by using the granule number in our search data as the 
offset for each element. Because a thread will never have another thread's granule (via 
prange​), it will also never write to another thread’s results element. The tradeoff is most of 
the time we’ll be over-allocating space to store our results but supporting fast 
multithreading is easily worth this small memory cost. 
 
The per-granule verdict of a search is either match or no-match so if a thread finds a 
partition that has true swath path intersection with the AOI then the thread immediately 
writes a ‘1’ to the correspond granule’s element in the results array and is then ready to 
work on another granule. If no match is found, that element in the results array remains ‘0’. 

27 ​https://en.wikipedia.org/wiki/Locality_of_reference 
28 ​https://en.wikipedia.org/wiki/Embarrassingly_parallel 
29 ​https://wiki.python.org/moin/GlobalInterpreterLock 

https://en.wikipedia.org/wiki/Locality_of_reference
https://en.wikipedia.org/wiki/Embarrassingly_parallel
https://wiki.python.org/moin/GlobalInterpreterLock


After the search has gone through all orbits the parallel section of the code ends and we’re 
free to use the results array in single-threaded fashion by reading across all of the indices 
and detecting which ones are no longer zero. 
 

 
 
The rest of the code is mostly self-explanatory or has already been described in e.g. The 
Shape of GEDI, Part 2. There are two NumPy functions we need for the prototype that 
aren’t Numba compatible so I had to edit the one and write the other. The first function is 
polyder​ and I’ve indicated in the comments it was a lift from NumPy. I wrote the second 
function, ​polyval​, along with the rest of the software. 

Search Performance 
The search performance is very good even without Numba but when it’s enabled the 
library+compiler makes the run time two orders of magnitude faster. It’s my understanding 
a speed increase of that amount is typical for Numba when compared to CPython. 
 
How fast the search runs depends on a number of variables. Those as well as some 
re-stated information about partitions are detailed in the table below. Note: the dataset 
used was the month of May, 2019. All two-year numbers are extrapolated by multiplying 
the data (not the final numbers but actually increasing the amount of data loaded via 
duplication) by 24. 
 

Partitions specified 
error threshold 

0.030 km  0.020 km  0.010 km  0.005 km 

Partitions mean 
accuracy 

0.0282164 km  0.0188838 km  0.0094202 km  0.0047340 km 

Partitions time to 
generate, per 
month of data 

17.51 hours  17.25 hours  18.71 hours  19.01 hours 

Partitions size on 
disk, 2 year (*) 

3.84 GB  5.77 GB  10.22 GB  16.10 GB 

Partitions load time 
(*) (+) 

103.782 seconds 
(+) 

150.246 seconds 
(+) 

282.970 seconds 
(+) 

448.251 seconds 
(+) 

Python, memory 
used (*) 

1.16 GB  1.71 GB  2.94 GB  4.60 GB 

Python, time to 
search (*) 

0.325611475 
seconds 

0.378034381 
seconds 

0.550040546 
seconds 

0.661551114 
seconds 

Numba, system 
memory used (*) 

1.15 GB  1.71 GB  2.96 GB  4.64 GB 



Numba, time to 
search (*) 

0.002471092 
 seconds 

0.004112495 
seconds 

0.005550449 
seconds 

0.008975056 
seconds 

 
● (*) Entries with an asterisk, including all searches, used a 2-year (simulated) dataset 
● (+) Data load times for a simulated 2 years can actually be as fast as < 1 second with 

serialization code in play (not shown; it was trivial to implement though). I’d still 
recommend loading the data for a long running process that could serve many 
requests, though. 

● There were ten AOI bounding boxes used for searching and the average run-time 
was used as the “time to search”. The timed search took place after warming up the 
JIT compiler with non-identical searches. 

● The system used for these tests was a commodity desktop: AMD Ryzen 3900X 
12-core / 24-thread, with 32GB of memory and SSD storage. Tests were conducted 
on bare metal (no virtualization). 

● Partition generation ran with 24 + 1 processes (Python multiprocess library). 
● The partitions were stored as JSON (text). 
● All partitions were configured to use 7-degree polynomials. 

 

Miscellany 

Improvements for the Future 
Now that we have our prototype there’s still a lot of room for improvement and worthwhile 
exploration left. Some ideas include: 

● Write a web service that integrates this prototype to an API and front-end. 
● Explore other forms of regression for generalizing GEDI geo-located data. 
● In many ways we’ve already compared the difference between spherical and 

ellipsoid geodesics but writing a prototype that used ellipsoid models throughout 
and seeing the performance differences would be worthwhile. 

● Try different polynomials; using 7-degree polynomials was just a guess. This likely 
wouldn’t impact search time very much but could improve memory requirements. 

● Investigate ways this prototype could integrate with a larger body of software 
capable of spatial, temporal, and band subsetting for GEDI, as that is the next tool a 
scientist would likely reach for. 

● Some code refactoring might help as well. 
 



Code that didn’t make it 
There was a fair amount of code that didn’t make it into the final version of the prototype 
as most of it was written and then rewritten a handful of times but I think that’s acceptable 
for an exploratory project such as this one. For example, here’s the first version of my 
bounding box intersection detection code versus the one that replaced it. In the first 
version I was thinking of the problem more two-dimensionally and in the second version I 
realized the problem can be solved more simply by projecting the two dimensions to each 
one-dimensional and solving them in turn. The second version is easier to follow and test: 
 
First version (some comments removed): 
def​ ​bbox_intersect​(​a_ary​, ​b_ary​): 

    a_lon_min = a_ary[​0​][​0​] 

    a_lon_max = a_ary[​1​][​0​] 

    a_lat_min = a_ary[​0​][​1​] 

    a_lat_max = a_ary[​1​][​1​] 

 

    b_lon_min = b_ary[​0​][​0​] 

    b_lon_max = b_ary[​1​][​0​] 

    b_lat_min = b_ary[​0​][​1​] 

    b_lat_max = b_ary[​1​][​1​] 

  

    ​if​ (​# Detect if a corner of 'b' is inside 'a' 

        ​# Detect 'a' edge-only overlap with 'b' 

        ​# Detect 'b' is wholly inside 'a' 

        (((a_lon_min <= b_lon_min) ​and​ (a_lon_max >= b_lon_min)) ​or 

         ((a_lon_min <= b_lon_max) ​and​ (a_lon_max >= b_lon_max)) 

         ​and 

         ((a_lat_min <= b_lat_min) ​and​ (a_lat_max >= b_lat_min)) ​or 

         ((a_lat_min <= b_lat_max) ​and​ (a_lat_max >= b_lat_max))) 

        ​# Detect if a corner of 'a' is inside 'b' 

        ​# Detect 'b' edge-only overlap with 'a' 

        ​# Detect 'a' is wholly inside 'b' 

        ​or 

        (((b_lon_min <= a_lon_min) ​and​ (b_lon_max >= a_lon_min)) ​or 

         ((b_lon_min <= a_lon_max) ​and​ (b_lon_max >= a_lon_max)) 

         ​and 

         ((b_lat_min <= a_lat_min) ​and​ (b_lat_max >= a_lat_min)) ​or 

         ((b_lat_min <= a_lat_max) ​and​ (b_lat_max >= a_lat_max)))): 

        ​return​ ​True 

    ​else​: 

        ​return​ ​False 



 
Second and current version (some comments removed): 
 
def​ ​is_overlap_sorted_values​(​v1​, ​v2​, ​w1​, ​w2​): 

    ​if​ (v2 < w1) ​or​ (v1 > w2): 

        ​return​ ​False 

    ​else​: 

        ​return​ ​True 

 

 

def​ ​bbox_intersect​(​a_ary​, ​b_ary​): 

    ​# Detect longitude and latitude overlap 

    ​if​ is_overlap_sorted_values(a_ary[​0​][​0​], a_ary[​1​][​0​], b_ary[​0​][​0​], b_ary[​1​][​0​]) \ 

            ​and​ is_overlap_sorted_values(a_ary[​0​][​1​], a_ary[​1​][​1​], b_ary[​0​][​1​], 

b_ary[​1​][​1​]): 

        ​return​ ​True 

    ​else​: 

        ​return​ ​False 

 

Summary 
Over its two year mission GEDI will release coordinate data totalling 373 GB when stored as 
text or 149 GB when stored in a binary format. The coordinate data will contain over 
10,009,000,000 points. 
 
What we’ve essentially created is a form of lossy compression that not only decreases the 
amount of storage needed by 32:1 but also makes those 10 billion points searchable with a 
high degree of accuracy in 1/100th of a second, requiring only a single compute instance 
and commodity hardware. 

 
I hope you enjoyed reading this as much as I did in writing it. If you would like to make any 
corrections or suggestions ​please​ contact Element 84 - I’ll address it ASAP. This paper has 
not yet been science reviewed and any mistakes you may find (science or otherwise) are 
my own. 
 
A sincere thank you to Element 84: they’re a fantastic company full of capable people and 
it’s because of them I’ve had the opportunity to be in an environment that made this work 
possible. 
 
–Ryan Waters 
 


