

Summary
This paper presents a novel method for geographically searching GEDI lidar data version 1.
An example execution time over a simulated 2 years worth of GEDI coordinate data (10+
billion points and 149 GB in size) leveraging a parallel search on a single compute instance
ran in less than 1/100th of a second and used 4.64 GB of memory. The search accuracy
included an area averaging 4.73 meters above and below GEDI’s swath path +/- error
introduced by using a spherical earth model (< ~ 20 meters of error). The included code is
from a working prototype in python using mostly SciPy, GeoPy and Numba libraries.

Introduction
GEDI (Global Ecosystem Dynamics Investigation) released data to the public on January 21, 1

2020 and a geo-locator was released shortly thereafter on February 10th, 2020 . When 2 3

satellites and other remote sensing instruments introduce new data to research
communities a geo-locator may be written to enable that data to be searchable and more
usable.

This paper presents an accurate and computationally efficient method of geo-searching
GEDI data by taking the reader through the investigative process and some of the
trial-and-error along the way to a solution. If you are a programmer, a scientist or
somewhere on the path to becoming either (or both!) then you’re the intended audience.
Let’s begin!

What is GEDI?
GEDI is a light ranging and detection (lidar) / laser altimeter mounted to the International
Space Station (ISS). According to GEDI's website, ​"GEDI will provide answers to how
deforestation has contributed to atmospheric CO2 concentrations, how much carbon forests will
absorb in the future, and how habitat degradation will affect global biodiversity." “GEDI has the
highest resolution and densest sampling of any lidar ever put in orbit (and) is a full-waveform
lidar instrument that makes detailed measurements of the 3D structure of the Earth’s surface”.

1 GEDI website - ​https://gedi.umd.edu/
2 GEDI initial public release - ​https://earthdata.nasa.gov/learn/articles/first-gedi-data-available
3 GEDI Finder announcement - ​https://gedi.umd.edu/lp-daac-release-of-gedi-finder/

https://gedi.umd.edu/
https://earthdata.nasa.gov/learn/articles/first-gedi-data-available
https://gedi.umd.edu/lp-daac-release-of-gedi-finder/

What is the Problem?
GEDI, over the lifetime of its 2+ year mission, is projected to have 200+ TB of data files
(known as granules) containing 149+ GB of geo-located point data. Working with that much
data can be unwieldy and maybe we’re only interested in a land area within a single
country or large forest and, therefore, only need to download or otherwise access a subset
of the available files. Our geo-locator service would take the geometry of our area of
interest (AOI) and only return the URLs for data files that may be relevant. Specifically, we'll
create a bounding box or rectangle of longitude and latitude around our AOI and then we’ll
determine which data intersect the bounding box.

Our goal, then, is to write software which can quickly search point data within a reasonable
margin of error based on a user-supplied bounding box.

Understanding the Data
The path of a GEDI orbit drawn on a map has the shape of an imperfect sinusoidal line–a
string laid across the globe. When those orbits build up over time they criss-cross forming a
net or latticework.

An illustration of orbit 2352, courtesy of LP DAAC 4

(from: ​https://lpdaac.usgs.gov/media/images/GEDI_L1B_Orbit02352_Orbit.original.png

4 ​https://lpdaac.usgs.gov/products/gedi01_bv001/

https://lpdaac.usgs.gov/media/images/GEDI_L1B_Orbit02352_Orbit.original.png
https://lpdaac.usgs.gov/products/gedi01_bv001/

The range of a single orbit is about 51.6 degrees to -51.6 degrees latitude and will cover
most longitudes. The data usually crosses the anti-meridian and the start and end of each
orbit will be at different longitudes. For instance, one of the orbits (not shown) begins at
56.51247116483483 degrees longitude, crosses the antimeridian between longitudes
179.99995720557044 and -179.99976982688509, and then finishes its orbit at longitude
32.930112087033024.

If you zoom in on an orbit (and one orbit has multiple ‘products’ with one granule or file per
orbit per product) you would see eight parallel ground tracks made by regularly spaced
points of laser observations. If you're familiar with how farmers commonly grow corn, think
of each point as a corn stalk with a string of points forming a corn row.

The geo-located waveforms or data points are about 25 meters wide and, on a given row or
track, are spaced about 60 meters apart. There is about 600 meters of space between each
track for a total swath width of 4.2 kilometers. The eight GEDI beams are: 0000, 0001, 0010,
0011, 0101, 0110, 1000, and 1011. Beam 0110 or beam 'six' is also the sixth beam ordinally
and is the only one with associated coordinate data. The first beam has the highest latitude
and the last beam has the lowest. The location data are degrees of longitude and latitude
and are stored as double floats (8 bytes) in a Geographic Coordinate Reference System
(CRS) ("WGS84"). Granules are persisted in a complicated filesystem-in-a-file format called
HDF5 . 5

What will be our Approach?
The nature of GEDI data makes for interesting work when implementing a locator. GEDI has
no hard boundaries apart from each orbit, just individual points. The granules themselves
aren’t associated with pre-defined tiles or bounding boxes like some other remote sensing
products. If you’ve ever worked with splines in a vector graphics program like Inkscape, you
might know they’re based on math. With the path of the data being mostly sinusoidal, what
if we were able to fit a mathematical function to each orbit’s curve?

A spline animation showing how a curve can be constructed from control points.

5 HDF file format - ​https://en.wikipedia.org/wiki/Hierarchical_Data_Format

https://en.wikipedia.org/wiki/Hierarchical_Data_Format

Animation by Phil Tregoning, Public Domain.

Earlier I had mentioned we need to be accurate within a margin of error. Geocoding, for
example, is considered “highly accurate” if it has a margin of error less than 50 meters . 6

We’ll see how close we can get to that.

I’ll include some code examples written in Python but many programming languages would
be appropriate for a project like this one.

Investigations: Fitting a Trig Function
First, we’ll want to download a sample of Level 1B GEDI granules and extract the longitude 7

and latitude for each point of the 0110 beam. They’re about 40MB in size when stored as
JSON and will be the basis data for fitting functions.

import​ h5py

import​ json

import​ re

import​ os

def​ ​extract_coords​():

 from_path = ​'./path/to/GEDI01_B'

 to_path = ​'./path/to/gedi_l1b_coords_2019_05'

 ​for​ root, dirs, files ​in​ os.walk(from_path):

 ​if​ ​len​(files) > ​0​:

 ​for​ f ​in​ files:

 ​with​ ​open​(os.path.join(root, f), ​'rb'​) ​as​ g:

 granule = h5py.File(g, ​'r'​)

 output_name = re.sub(​r​'​\.​h5$'​, ​''​, f)

 ​print​(output_name)

 ​with​ ​open​(os.path.join(to_path, output_name), ​'w'​) ​as​ output_file:

 output_data = {​'name'​: output_name,

 ​'lons'​:

granule[​'BEAM0110/geolocation/longitude_bin0'​][()].tolist(),

 ​'lats'​:

granule[​'BEAM0110/geolocation/latitude_bin0'​][()].tolist()}

 json.dump(output_data, output_file)

6
https://www.esri.com/arcgis-blog/products/analytics/analytics/geocoding-delivering-high-location-ac
curacy/
7 https://lpdaac.usgs.gov/tools/data-pool/

https://www.esri.com/arcgis-blog/products/analytics/analytics/geocoding-delivering-high-location-accuracy/
https://www.esri.com/arcgis-blog/products/analytics/analytics/geocoding-delivering-high-location-accuracy/
https://lpdaac.usgs.gov/tools/data-pool/

Our first test will be to see how a sinusoidal function fits the data. The following code uses
SciPy's ​curve_fit to take a sine function and adjust its arguments according to a least 8

squares linear regression . If you're unfamiliar with least squares regression ​this short 9

video​ gives a great introduction.

Regarding the anti-meridian: it’s the global boundary opposite the (prime) meridian
where longitude is 0. The anti-meridian is 180 degrees (or -180 degrees). From a
coordinate reference system standpoint, we consider the anti-meridian to be the
beginning and the end and geographic features which cross it should be vertically cut in
two. In our case, any orbit of GEDI data we deal with will be cut at this point as needed.

Here’s an attempt at fitting a full orbit of data:

from​ geopy.distance ​import​ geodesic

import​ json

import​ matplotlib.pyplot ​as​ plt

import​ numpy ​as​ np

from​ scipy.optimize ​import​ curve_fit

from​ statistics ​import​ mean

import​ time

def​ ​split_on_anti_meridian​(​lons​, ​lats​):

 ​""" Take two lists of lists, lons and lats, and return two lists of lists

 with lons and lats split on the antimeridian """

 ​# Working across the anti meridian boundary is numerically challenging so

 ​# it's best to break up our data along that boundary.

 ​def​ ​_fn​(​lons​, ​lats​):

 am = ​0

 ​for​ i ​in​ ​range​(​1​, ​len​(lons)):

 ​if​ (lons[i-​1​] > ​0​) ​and​ (lons[i] < ​0​):

 am = i

 ​break

 ​if​ am > ​0​:

 ​return​ [lons[​0​:am], lons[am:]], [lats[​0​:am], lats[am:]]

 ​else​:

 ​return​ [lons], [lats]

8 Scipy curve_fit - ​https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
9 Least squares regression - ​https://en.wikipedia.org/wiki/Least_squares

https://www.youtube.com/watch?v=YwZYSTQs-Hk
https://www.youtube.com/watch?v=YwZYSTQs-Hk
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
https://en.wikipedia.org/wiki/Least_squares

 acc_lons = []

 acc_lats = []

 ​for​ lons_part, lats_part ​in​ ​zip​(lons, lats):

 lons_parts, lats_parts = _fn(lons_part, lats_part)

 ​for​ lons_ ​in​ lons_parts:

 acc_lons.append(lons_)

 ​for​ lats_ ​in​ lats_parts:

 acc_lats.append(lats_)

 ​return​ acc_lons, acc_lats

def​ ​get_fn_error_rates​(​fn​, ​fit​, ​lons​, ​lats​):

 ​""" Take a function fn, array of longitude values lons, and array of

 latitude values lats and return the mean average error and maximum

 error between function-calculated latitude and reference latitude

 values. """

 ​# Because we're computing distance between latitudes on the same longitude

 ​# the longitudinal value may be any value; 0, in this case

 ​# One degree latitude is 110.567 km at the equator and 111.699 at the poles.

 ​# We could have used the Haversine formula which assumes a Great-circle but

 ​# the geodetic distance uses an ellipsoid representation and is more

 ​# accurate (WGS-84 ellipsoid by default)

 deltas_lat = [((lats[i], ​0​), (fn(lons[i], *fit[​0​]), ​0​)) ​for​ i ​in​ ​range​(​len​(lons))]

 deltas_km = [geodesic(*points).kilometers ​for​ points ​in​ deltas_lat]

 ​return​ mean(deltas_km), ​max​(deltas_km)

sinusoidal function

def​ ​my_sin​(​x​, ​freq​, ​amplitude​, ​phase​, ​offset​):

 ​return​ np.sin(x * freq + phase) * amplitude + offset

start_time = time.time()

filename = ​".​/​gedi_coords​/​GEDI01_B_2019108002011_O01959_T03909_02_003_01"

lons = []

lats = []

with​ ​open​(filename) ​as​ coords:

 lonlat = json.load(coords)

 lons_, lats_ = split_on_anti_meridian([lonlat[​'lons'​]], [lonlat[​'lats'​]])

 ​for​ i ​in​ ​range​(​len​(lons_)):

 lons.append(np.array([​float​(x) ​for​ x ​in​ lons_[i]]))

 lats.append(np.array([​float​(y) ​for​ y ​in​ lats_[i]]))

guess_freq = [​0.1​, ​0.04​]

for​ i ​in​ ​range​(​0​, ​2​):

 guess_amplitude = ​1

 guess_phase = ​1

 guess_offset = ​0

 p0=[guess_freq[i], guess_amplitude, guess_phase, guess_offset]

 ​# find the parameters that fit the function to all of the data

 fit = curve_fit(my_sin, lons[i], lats[i], ​p0​=p0)

 ​# create lat data based on lon data and fit parameters

 data_fit = my_sin(lons[i], *fit[​0​])

 ​# error rates

 avg_error, max_error = get_fn_error_rates(my_sin, fit, lons[i], lats[i])

 ​print​(​f​'Avg error: ​{​avg_error​}​, Max error: ​{​max_error​}​'​)

 ​print​(*fit[​0​])

 ​# lon, lat format

 plt.plot(lons[i], lats[i], ​'.'​) ​# blue

 plt.plot(lons[i], data_fit) ​# orange

 plt.show()

total_time = time.time() - start_time

print​(​'Total time taken: ​{0:.3f}​ seconds'​.format(total_time))

(output)
Avg error: 174.42631416942262, Max error: 713.7965575081116

0.022819569935377544 -52.727145520176194 7.484391428110654 1.0427322123266742

Avg error: 143.76553519578917, Max error: 595.444003946346

0.024425584080654244 50.83506880084666 -0.5238782974421087 -0.9183431695966431

Total time taken: 250.415 seconds

(end output)

What we see above are two outputs for granule
GEDI01_B_2019108002011_O01959_T03909_02_003_01 ​, one output each for data
before and after the anti-meridian. Data points are the blue line and our fitted function is in
orange. We derive the error by taking each of the 1,097,865 data points and finding an
ellipsoid model geodetic distance between actual latitude data and the fitted function 10

10 ​https://en.wikipedia.org/wiki/Geodesic

https://en.wikipedia.org/wiki/Geodesic

computed latitude at a data point’s longitude. The maximum error is the largest of these
distances and the average is the mean across the population.

Results will vary by granule/orbit but, in this case, data before the anti-meridian has an
average error of ~ 174 km and max error of ~ 714 km. Unfortunately these results are
abysmal. There are 511,535 data points before the anti-meridian; would we get better
results by fitting the same function across fewer points?

(output)
Avg error: 89.71874863551194, Max error: 383.5056917972365

0.013393636818693024 120.91332836643203 4.538724550082946 69.54807178206747

Total time taken: 90.574 seconds

(end of output)

Taking 400,000 points instead of 511,535 is still far from our maximum error goal but
notice how the average error is ~ 90 km and maxes out at ~ 383 km. In this case,
decreasing the amount of data we’re trying to fit by 22% improved our error rates by about
37%. We’ll use this as a hint for future work.

In addition to fitting functions to smaller data sets, what if we also tried fitting a different
kind of function like polynomials?

Investigations: Fitting a Polynomial, Part 1

A polynomial is “an expression consisting of variables … and coefficients” . The degree of 11

a polynomial is based on the highest exponent.

An example polynomial: 2x​5​ - 3x​4​ - 200x​3​ + 125x​2​ + 1.5x + 9

To establish a baseline of accuracy over our sample granule, here are the results for each
side of the anti-meridian split (the same spatial extent used in each series) using 5 to 50
degree polynomials in 5 degree increments:

Before anti-meridian:

polynomial degree, avg error, max error

5, 76.55509637535208, 428.51018690324673

10, 10.61696980812977, 52.66230616071602

15, 1.3742996807505743, 8.416259452795414

20, 0.9463589112804677, 5.84428483614433

25, 0.36587500365615094, 3.7612231913568124

30, 0.6121521654083976, 3.884122556954003

35, 0.3946447194103193, 3.752943781548051

40, 0.20621685112677862, 2.297003965498448

45, 0.34909398944147363, 3.2346368757710366

50, 0.17560606903268472, 2.0494112740157284

After anti-meridian:

polynomial degree, avg error, max error

5, 56.536427851501415, 299.8989631295974

10, 4.858796049696968, 39.10767524010038

15, 0.8223061044425902, 5.550106052769198

20, 0.6138984906060114, 3.9214406917995404

25, 0.44339075908992576, 3.437786979647548

30, 0.24080619500467015, 2.7728586944941496

35, 0.11282835661474254, 1.2100705819471451

11 ​https://en.wikipedia.org/wiki/Polynomial

https://en.wikipedia.org/wiki/Polynomial

40, 0.17938472689470317, 2.041906852656545

45, 0.08118271662070943, 0.9414158801294034

50, 0.12419120539731891, 1.5798505249781858

It’s interesting how, in this case, beyond a ~ 35 degree polynomial the fit stops reliably
improving.

SciPy documentation warns us against using high degree polynomials due to loss of
precision. The loss of digits beyond the floating point representation’s mantissa become 12

significant when a number is taken to such a high exponent as the loss of precision
compounds itself. We could change our representation to something more than 64-bits
but that trades speed for accuracy and would limit our 3rd-party software library
options. That said, it would be interesting to experiment with higher-bit representations.

To achieve greater accuracy we can repeat what we did earlier when we fit a trig function:
apply function fitting across slices or partitions of data of varying sizes. The following
experiment divides the data into an increasing number of partitions, 1 through 100, and
applies polynomial fitting functions of degree 2 through 40 (quadratic, cubic, quartic, and
so on). It’s worth pointing out that NumPy is doing all the heavy lifting here - thank you
NumPy:

from​ geopy.distance ​import​ geodesic

import​ json

import​ math

import​ numpy ​as​ np

from​ statistics ​import​ mean

import​ time

import​ warnings

def​ ​split_on_anti_meridian​(​lons​, ​lats​):

 ​""" Take two lists of lists, lons and lats, and return two lists of lists

 with lons and lats split on the antimeridian """

 ​# Working across the anti meridian boundary is numerically challenging so

 ​# it's best to break up our data along that boundary.

 ​def​ ​_fn​(​lons​, ​lats​):

 am = ​0

 ​for​ i ​in​ ​range​(​1​, ​len​(lons)):

 ​if​ (lons[i-​1​] > ​0​) ​and​ (lons[i] < ​0​):

 am = i

 ​break

12 ​https://fabiensanglard.net/floating_point_visually_explained/

https://fabiensanglard.net/floating_point_visually_explained/

 ​if​ am > ​0​:

 ​return​ [lons[​0​:am], lons[am:]], [lats[​0​:am], lats[am:]]

 ​else​:

 ​return​ [lons], [lats]

 acc_lons = []

 acc_lats = []

 ​for​ lons_part, lats_part ​in​ ​zip​(lons, lats):

 lons_parts, lats_parts = _fn(lons_part, lats_part)

 ​for​ lons_ ​in​ lons_parts:

 acc_lons.append(lons_)

 ​for​ lats_ ​in​ lats_parts:

 acc_lats.append(lats_)

 ​return​ acc_lons, acc_lats

def​ ​generate_polynomial​(​deg​, ​lons​, ​lats​):

 ​""" Takes degree of polynomial deg, array of longitude values lons, and

 array of latitude values lats and attempts to fit a polynomial to the

 data via non-linear regression (least squares). Returns the

 polynomial."""

 ​with​ warnings.catch_warnings():

 warnings.simplefilter(​'ignore'​, np.RankWarning)

 pf = np.polyfit(lons, lats, deg)

 ​return​ np.poly1d(pf)

def​ ​get_fn_error_rates​(​fn​, ​lons​, ​lats​):

 ​""" Take a function fn, array of longitude values lons, and array of

 latitude values lats and return the mean average error and maximum

 error between function-calculated latitude and reference latitude

 values. """

 ​# Because we're computing distance between latitudes on the same longitude

 ​# the longitudinal value may be any value; 0, in this case

 ​# One degree latitude is 110.574 km at the equator and 111.699 at the poles.

 ​# We could have used the Haversine formula which assumes a Great-circle but

 ​# the geodetic distance uses an ellipsoid representation and is more

 ​# accurate (WGS-84 ellipsoid by default, same as GEDI)

 deltas_lat = [((lats[i], ​0​), (fn(lons[i]), ​0​)) ​for​ i ​in​ ​range​(​len​(lons))]

 deltas_km = [geodesic(*points).kilometers ​for​ points ​in​ deltas_lat]

 ​return​ mean(deltas_km), ​max​(deltas_km)

input_filename = ​".​/​gedi_coords​/​GEDI01_B_2019108002011_O01959_T03909_02_003_01"

output_filename = ​".​/​error_rates.csv"

partition_range = [​1​, ​101​]

pn_degree_range = [​2​, ​41​]

start_time = time.time()

with​ ​open​(input_filename) ​as​ coords:

 ​with​ ​open​(output_filename, ​'w'​) ​as​ output:

 lonlat = json.load(coords)

 lons_, lats_ = split_on_anti_meridian([lonlat[​'lons'​]], [lonlat[​'lats'​]])

 output.write(​'total partitions, polynomial degree, avg error, max error​\n​'​)

 ​for​ parts ​in​ ​range​(*partition_range):

 ​# We're only going to deal with points before the anti-meridian for

 ​# this test.

 sample_size = math.ceil(​len​(lons_[​0​]) / parts)

 lons = np.array(lons_[​0​][:sample_size])

 lats = np.array(lats_[​0​][:sample_size])

 ​for​ deg ​in​ ​range​(*pn_degree_range):

 pn = generate_polynomial(deg, lons, lats)

 avg_error, max_error = get_fn_error_rates(pn, lons, lats)

 output.write(​f​'​{​parts​}​, ​{​deg​}​, ​{​avg_error​}​, ​{​max_error​}​\n​'​)

total_time = time.time() - start_time

print​(​'Total time taken: ​{0:.3f}​ seconds'​.format(total_time))

In order to better visualize the results, here is a heatmap with hue based on maximum
error. The y-axis represents the number of partitions and the x-axis is the degree of
polynomial. The first partition is shown and meant to be a representative sample of the
rest (graph code not shown):

It took 7.75 hours to generate the data for this graph on an AMD FX-8350

There are a couple patterns worth noting: first, within a given number of partitions and as
we increase the degree of the polynomials we at some point early on see diminishing and
then negligible returns on error rate reduction. Second, we seem to achieve decent
accuracy with low degree polynomials if the number of partitions is relatively high;
increasing the total number of partitions reduces the amount of relative change and
flattens the curve within the dataset. According to this test 90 partitions and a 7 degree
polynomial achieves an accuracy of better than 20 meters.

However, if we look at the accuracy of the partitions beyond the first we see a very different
picture. Shown in the chart below are all ~90 partitions and the error rate varies widely.
Here’s the accuracy over our sample granule
GEDI01_B_2019108002011_O01959_T03909_02_003_01 ​:

Maximum error in Blue, Average error in yellow

The polynomials fit to each partition tend to achieve a maximum error of 20 meters or less
but they can also fit much worse at over 100 meters (0.1 km). This variance is concerning
and suggests we should probably seek another approach.

On the Uses of Error
The significance of generating a maximum error rate for each partition is twofold–we’ve
seen one use so far and we’ll see a second use later. The error rate indicates how accurate
a fitted function is to the actual GEDI coordinates. If the curve is of acceptable quality then
we’ve fulfilled an important requirement and come closer to a usable mathematical proxy.

The utility of maximum error continues when we use fitted functions as the ‘engine’ in our
search engine. We’ll take the lon/lat values of the bounding box around a user’s AOI and
see if they intersect with data generated by the polynomial, +/- the maximum error.
Knowing the longitudinal extent of a given partition, a polynomial and the maximum
(latitudinal) error of the polynomial over that partition means we’ll know whether a granule
might​ intersect a bounding box, with our degree of uncertainty equal to the error. In the
end we may end up returning a granule that doesn’t actually intersect an AOI but we won’t
miss any granules that should match. In other words, given the tools we’re building up we
know there may be false positives but there shouldn’t be any false negatives.

Investigations: Fitting a Polynomial, Part 2
Our strategy for fitting polynomials to the data so far has revolved around defining the
number of fixed width partitions into which we subdivide the data as well as the degree of
polynomial applied to each partition. What if instead we turn things around and take our
error rate as our goal, our invariant, and let the code choose both the number of partitions
and the partition width needed to achieve that goal? We could also let the code choose the
degree of polynomial but because degree has diminishing to negligible returns as we
increase its value, we could instead make that, too, an invariant and choose the polynomial
degree ourselves. A drawback to using arbitrarily large polynomials is that their storage
cost is degree-plus-one times the number of partitions times the number of orbits in our
dataset and it’s beginning to seem possible that the final searchable dataset could reside
entirely in memory; this would make for faster searches. Having consistent memory sizes
for each polynomial also means we may be able to traverse our data structures more
efficiently and use libraries such as numpy and numba which work best (in the case of
NumPy) or expect (in the case of Numba) uniformity of type (homogeneous arrays).

Here is the code to dynamically size partitions over the sample granules:

(other functions same as before)

def​ ​apply_partition_latitudes​(​p​):

 ​""" Takes a dict p representing partition data and mutates that partition

 data to include its minimum and maximum latitude values. """

 bbox = poly_bbox(p[​'pn'​], p[​'lon_min'​], p[​'lon_max'​], p[​'max_error'​])

 lat_range = {​'lat_min'​: bbox[​0​][​1​], ​'lat_max'​: bbox[​1​][​1​]}

 ​return​ {**p, **lat_range}

def​ ​create_dynamic_partitions​(​lons__​, ​lats__​):

 max_inc_idx = ​0

 max_increments = [​100​, ​1000​, ​20000​]

 pn_degree = ​7

 error_threshold = ERROR_THRESHOLD

 results = []

 ​#partition_num = 1

 lons_, lats_ = split_on_anti_meridian([lons__], [lats__], pn_degree)

 ​for​ s_lons, s_lats ​in​ ​zip​(lons_, lats_):

 lower_bound = ​0

 upper_bound = pn_degree + ​1

 known_good = pn_degree + ​1

 known_bad = ​len​(s_lons)

 ​while​ (upper_bound + ​1​) < ​len​(s_lons):

 ​while​ ​True​:

 lons = s_lons[lower_bound:upper_bound]

 lats = s_lats[lower_bound:upper_bound]

 pn = generate_polynomial(pn_degree, lons, lats)

 avg_error, max_error = get_fn_error_rates(pn, lons, lats)

 ​#print(f'p:{partition_num}, lower_bound:{lower_bound},

known_good:{known_good}, upper_bound:{upper_bound}, known_bad:{known_bad},

max_error:{max_error}')

 ​# Partition width must be at least one more than the

 ​# degree of polynomial.

 ​if​ ((known_bad - known_good) == ​1​) ​or​ (known_good > known_bad):

 upper_bound = known_good

 lons = s_lons[lower_bound:upper_bound]

 lats = s_lats[lower_bound:upper_bound]

 pn = generate_polynomial(pn_degree, lons, lats)

 avg_error, max_error = get_fn_error_rates(pn, lons, lats)

 ​break

 ​# the partition may grow

 ​if​ max_error <= error_threshold:

 known_good = upper_bound

 maybe_increment = ​int​((known_bad - upper_bound) / ​2​)

 ​if​ maybe_increment > max_increments[max_inc_idx]:

 increment = max_increments[max_inc_idx]

 max_inc_idx += ​1

 ​if​ max_inc_idx >= ​len​(max_increments):

 max_inc_idx = ​len​(max_increments) - ​1

 ​else​:

 increment = maybe_increment

 upper_bound = upper_bound + increment

 ​if​ upper_bound == known_good:

 upper_bound += ​1

 ​# the partition must shrink

 ​else​:

 known_bad = upper_bound

 upper_bound = upper_bound - ​int​((known_bad - known_good) / ​2​)

 ​if​ upper_bound == known_bad:

 upper_bound -= ​1

 max_inc_idx = ​0

 lon_min = s_lons[lower_bound]

 lon_max = s_lons[upper_bound]

 partition = {​'left_extent'​: lower_bound,

 ​'right_extent'​: upper_bound,

 ​'pn'​: ​tuple​(pn.c),

 ​'lon_min'​: lon_min,

 ​'lon_max'​: lon_max,

 ​'max_error'​: max_error,

 ​'avg_error'​: avg_error}

 ​# compute bounding box for current partition

 partition = apply_partition_latitudes(partition)

 results.append(partition)

 lower_bound = upper_bound + ​1

 upper_bound = lower_bound + pn_degree + ​1

 known_good = lower_bound + pn_degree + ​1

 known_bad = ​len​(s_lons)

 ​#partition_num += 1

 ​# Sort partitions by longitude. This will introduce a gap in the data if

 ​# the orbit passes through the anti-meridian (which happens most of the

 ​# time). It's not a problem for the search but it's worth knowing it's

 ​# there. Makes the data binary search compatible on a per granule or

 ​# orbit basis.

 ​return​ ​sorted​(results, ​key​=​lambda​ ​x​: x[​'lon_min'​])

def​ ​filter_invalid_coords​(​lons_​, ​lats_​):

 ​""" Takes an array of longitude values lons_ and an array of latitude

 values lats_ and returns a copy of each with invalid with invalid

 point data removed. """

 lons = deepcopy(lons_)

 lats = deepcopy(lats_)

 ​for​ i ​in​ ​range​(​len​(lons)-​1​, ​0​, -​1​):

 ​if​ (lons[i] < -​180​) ​or​ (lons[i] > ​180​) ​or​ math.isnan(lons[i]) \

 ​or​ (lats[i] < -​90​) ​or​ (lats[i] > ​90​) ​or​ math.isnan(lats[i]):

 ​print​(​f​'Bad data removed at index ​{​i​}​: ​{​lons[i]​}​, ​{​lats[i]​}​'​)

 ​del​ lons[i]

 ​del​ lats[i]

 ​return​ lons, lats

def​ ​do​(​input_filenames​, ​input_path​, ​output_path​):

 ​for​ input_filename ​in​ input_filenames:

 ​print​(​'​\n​'​ + input_filename)

 ​with​ ​open​(input_path + input_filename) ​as​ coords:

 coords_json = json.load(coords)

 ​# Check for valid data; without this check I was receiving the

 ​# following error on some files: "ValueError: On entry to DLASCL

 ​# parameter number 4 had an illegal value". Turns out there are

 ​# some NaN's in GEDI coordinate data.

 lons, lats = filter_invalid_coords(coords_json[​'lons'​],

 coords_json[​'lats'​])

 partitions = create_dynamic_partitions(lons, lats)

 ​with​ ​open​(output_path + input_filename + ​'.json'​, ​'w'​) ​as​ output_file:

 json.dump(partitions, output_file)

if​ ​__name__​ == ​'__main__'​:

 start_time = time.time()

 ​with​ Pool(multiprocessing.cpu_count()) ​as​ p:

 p.starmap(do, [[[x], input_path, OUTPUT_PATH] ​for​ x ​in

(get_filenames(INPUT_PATH))])

 ​print​(​'Total time taken: ​{0:.3f}​ seconds'​.format(time.time() - start_time))

And here is some sample output which may help in understanding some of what it does:

GEDI01_B_2019108002011_O01959_T03909_02_003_01

p:1, lower_bound:0, known_good:8, upper_bound:8, known_bad:496607,

max_error:7.589719382119511e-06

p:1, lower_bound:0, known_good:8, upper_bound:108, known_bad:496607,

max_error:0.00013878764480470632

p:1, lower_bound:0, known_good:108, upper_bound:1108, known_bad:496607,

max_error:0.0011892317332065987

p:1, lower_bound:0, known_good:1108, upper_bound:21108, known_bad:496607,

max_error:0.027517041144147266

p:1, lower_bound:0, known_good:21108, upper_bound:41108, known_bad:496607,

max_error:0.03017484874312236

p:1, lower_bound:0, known_good:21108, upper_bound:31108, known_bad:41108,

max_error:0.027939061828534333

p:1, lower_bound:0, known_good:31108, upper_bound:31208, known_bad:41108,

max_error:0.02796734990838053

p:1, lower_bound:0, known_good:31208, upper_bound:32208, known_bad:41108,

max_error:0.028312941969671275

p:1, lower_bound:0, known_good:32208, upper_bound:36658, known_bad:41108,

max_error:0.030076797456290955

p:1, lower_bound:0, known_good:32208, upper_bound:34433, known_bad:36658,

max_error:0.02938518122491594

p:1, lower_bound:0, known_good:34433, upper_bound:34533, known_bad:36658,

max_error:0.029478135143909876

p:1, lower_bound:0, known_good:34533, upper_bound:35533, known_bad:36658,

max_error:0.030125655634307472

p:1, lower_bound:0, known_good:34533, upper_bound:35033, known_bad:35533,

max_error:0.02980586985488824

p:1, lower_bound:0, known_good:35033, upper_bound:35133, known_bad:35533,

max_error:0.02988107715667559

p:1, lower_bound:0, known_good:35133, upper_bound:35333, known_bad:35533,

max_error:0.030029824399015387

p:1, lower_bound:0, known_good:35133, upper_bound:35233, known_bad:35333,

max_error:0.029957015041170522

p:1, lower_bound:0, known_good:35233, upper_bound:35283, known_bad:35333,

max_error:0.029994421261588314

p:1, lower_bound:0, known_good:35283, upper_bound:35308, known_bad:35333,

max_error:0.030012615469099238

p:1, lower_bound:0, known_good:35283, upper_bound:35296, known_bad:35308,

max_error:0.030003960888411656

p:1, lower_bound:0, known_good:35283, upper_bound:35290, known_bad:35296,

max_error:0.029999573562684914

p:1, lower_bound:0, known_good:35290, upper_bound:35293, known_bad:35296,

max_error:0.030001771139518976

p:1, lower_bound:0, known_good:35290, upper_bound:35292, known_bad:35293,

max_error:0.03000103943413725

p:1, lower_bound:0, known_good:35290, upper_bound:35291, known_bad:35292,

max_error:0.03000030689072727

p:1, lower_bound:0, known_good:35290, upper_bound:35290, known_bad:35291,

max_error:0.029999573562684914

p:2, lower_bound:35291, known_good:35299, upper_bound:35299, known_bad:496607,

max_error:6.402811027698382e-08

p:2, lower_bound:35291, known_good:35299, upper_bound:35399, known_bad:496607,

max_error:3.712876595607178e-05

p:2, lower_bound:35291, known_good:35399, upper_bound:36399, known_bad:496607,

max_error:0.0009124606499388271

p:2, lower_bound:35291, known_good:36399, upper_bound:56399, known_bad:496607,

max_error:0.026815840995010092

p:2, lower_bound:35291, known_good:56399, upper_bound:76399, known_bad:496607,

max_error:0.02821008014045565

p:2, lower_bound:35291, known_good:76399, upper_bound:96399, known_bad:496607,

max_error:0.026437130476392765

p:2, lower_bound:35291, known_good:96399, upper_bound:116399, known_bad:496607,

max_error:0.02717588934470578

...

The first column starts with a repeating ‘p:1’ which indicates which partition the dynamic
partitioner is currently making. For a given set of coordinates, if the error is too high it will
shrink the coordinate range to a number between a known good range and a known bad
range. If the error is too low it will do the opposite and increase the range. It proceeds back
and forth until it reaches the longest range to fit the specified error threshold at which
point it stores the partition information for later writing and continues to find the next
partition, and so on, until it goes through all points of an orbit. The error calculation here is
relatively slow but accurate to within millimeters.

Here’s a graph from data generated by the code above for one granule (graph code not
shown but it’s using D3js v5):

Maximum error in Blue, Average error in yellow

(It took 1754 seconds to generate the data for this graph - AMD Ryzen 9 3900X)

Note that this graph shows maximum and average error rates over the same data as the
previous graph and the axes here use the same linear scale and range. What has changed
is the x-axis is now “number of data points” instead of “partition number”. The actual
partition boundaries are not shown.

We specified an error rate of 30 meters (0.030 km) fitting 7 degree polynomials and the
code created partitions of varying widths in an attempt to keep each at or below 30 meters.
Seeing the results on this chart is both heartening and puzzling - why is there still a
deviation in accuracy greater than what we specified? This behavior can be seen across
many of over 100 sample granules to which I fit polynomials. In fact, some granules were
exceedingly problematic. The worst in the sample set had to have 9679 partitions to reach
30 meter max error across most of its data. If the data we are fitting functions to were
uniform then it should be reasonable to expect more uniform results.

The Shape of GEDI Data, Part 1
Let’s zoom in on some problem areas of different granules and see what’s going on.

Some data have minor deviations, like small stair steps or an occasional point that’s almost
on top of another one while other data deviate strongly from the main line. Why do they do
this? Is the data valid? And the question most relevant to our work: Do we need to consider
these data? Would an individual who uses our search want to include these outliers in their
results?

We know GEDI is a taskable satellite, meaning the instrument can be pointed as needed.
Specifically, it has the ability to move up to 6 degrees latitude off nadir so there will be 13

times when the instrument will be directed ‘off-path’. It’s best to assume data released by
the GEDI team is vetted good data so we will account for it.

Accuracy of Our Approach
Over a sample month of data, May of 2019, I ran the dynamic partitioner with 7-degree
polynomials and specified error thresholds of 30m, 20m, 10m, and 5m. Shown below is a
histogram of achieved accuracy for each as well as other information that will help us
evaluate the results.

Polynomial Fit for Partitions of 30m (0.030 km) Specified Maximum Error

13 ​https://gedi.umd.edu/instrument/instrument-overview/

https://gedi.umd.edu/instrument/instrument-overview/

Average, mean: 0.028216439662905695 km

Average, median: 0.029954263344824216 km

Max error for worst fitting polynomial: 0.6869073938382132 km

Standard deviation or σ: 0.005039136508381175 km

Percentage of data points at or less than specified error threshold: 99.937 %

Percentage of data points above specified error threshold: 0.063 %

Total number of partitions for sample month: 402,865

Average partitions per granule: 943

Most partitions for a granule: 9679

Least partitions for a granule: 11

Total size on disk for sample month (as JSON): 164 MB

Polynomial Fit for Partitions of 20m (0.020 km) Specified Maximum Error

Average, mean: 0.01888378813809257 km

Average, median: 0.01996206643293634 km

Max error for worst fitting polynomial: 0.6869073938382132 km

Standard deviation or σ: 0.003850757467096522 km

Percentage of data points at or less than specified error threshold: 99.908 %

Percentage of data points above specified error threshold: 0.092 %

Total number of partitions for sample month: 606,931

Average partitions per granule: 1421

Most partitions for a granule: 11,333

Least partitions for a granule: 15

Total size on disk for sample month (as JSON): 246 MB

Polynomial Fit for Partitions of 10m (0.010 km) Specified Maximum Error

Average, mean: 0.009420246194762704 km

Average, median: 0.009966840586964055 km

Max error for worst fitting polynomial: 0.6869073938382132 km

Standard deviation or σ: 0.0030379619266287868 km

Percentage of data points at or less than specified error threshold: 99.828 %

Percentage of data points above specified error threshold: 0.172 %

Total number of partitions for sample month: 1,077,172

Average partitions per granule: 2523

Most partitions for a granule: 15,982

Least partitions for a granule: 27

Total size on disk for sample month (as JSON): 436 MB

Polynomial Fit for Partitions of 5m (0.005 km) Specified Maximum Error

Average, mean: 0.00473401961305397 km

Average, median: 0.004969986895258308 km

Max error for worst fitting polynomial: 0.6869073938382132 km

Standard deviation or σ: 0.0029390885193709146 km

Percentage of data points at or less than specified error threshold: 99.784 %

Percentage of data points above specified error threshold: 0.216 %

Total number of partitions for sample month: 1,696,332

Average partitions per granule: 3973

Most partitions for a granule: 19,957

Least partitions for a granule: 54

Total size on disk for sample month (as JSON): 687 MB

These stats demonstrate strong and consistent results from our dynamic partitioning code.
For example, to put 5 m of specified error (above and below) into perspective, it increases
our calculated swath footprint by only 0.237% or less over GEDI’s actual swath and this is
the case for over 99.828% of our sample.

Notice that we didn’t test a specified error threshold below 5 meters. While it would be
possible to do so, the accuracy probably isn’t necessary for this application and we’ll soon
see the error introduced by using spherical trigonometry (versus ellipsoid) can be a fair
amount larger (2x to 4x). Conversely, having some ‘extra slack’ in the fit may actually end up
being a desirable feature. A scientist may want to include all granules which have data that
intersect their AOI as well as any granules which are in very close proximity. As we’ve now
demonstrated, a wide range of specified error thresholds may be used with corresponding
memory tradeoffs. The search run-time differences will be covered soon.

The Shape of GEDI Data, Part 2
Before detailing the search process we should dig deeper into the differences between our
search model vs. the actual shape of GEDI data. As stated previously, we're using lon/lat
coordinates from beam 0110 (6) to fit our polynomials. One of the first steps in the search
process will be to see if the bounding box of a partition intersects the bounding box
containing the user-supplied AOI. That means we’ll need to develop a way to include the
entire swath path, from the first track to the last, in our bounding box.

The swath width is 4200m + (half the width of the first beam) + (half the width of the last
beam) = 4225m. The distance from beam 6 to beam 0 will always be 3012.5m and the
distance from beam 6 to beam “8” will always be 1212.5m. The pitfall in accounting for all of
the beams based on beam 6 is that our polynomials can only tell us a distance in latitude
perpendicular to the equator but our known distances are perpendicular to the path of a
GEDI orbit. We need to find a way to take track 6, add the due north distance to track 0 as
well as the due south distance to track “8”. If we were to simply add the constant
perpendicular-to-slope distance then our estimated bounding box would be inaccurate
proportional to the slope of the orbit at that longitude.

E.g. to find the latitudinal distance between track 6 and track 0 we must find the distance labelled “unknown”
above.

Thankfully there’s math that can take our ‘known’ and the slope of the data path to derive
the ‘unknown’.

The earth is slightly larger around the equator than it is pole-to-pole. Because of this the
earth, like other planets, is called an ‘oblate spheroid’ . The difference in the earth’s 14

radius at the equator vs. the north or south pole is about 21.385km. We’ll be using
spherical trigonometry which treats the earth as a perfect sphere; it’s more accurate than
euclidean equations but slightly less accurate than ellipsoid geodesics . 15 16

The first step is to translate our constant distance into degrees of arc length: The distance
from the northernmost swath edge to track 6 perpendicular to the orbit is 3.0125 km and
the constant distance we’ll use for 1 degree latitude is 110.5743 km . 17

The perpendicular distance between tracks 0000 and 0110 is 3.0125 km. Therefore 0110 to
0000 arc length is 3.6125 km / 110.5743 km or 0.027244… degrees.

Next, we need to know the orbital slope. This can be accomplished by taking a fitted
polynomial’s first derivative and supplying a longitude to get a slope value at that location. 18

We then take the arctangent or inverse tangent of the slope to find the slope angle. This
value is commonly called ‘theta’:

To find the latitudinal distance (the hypotenuse in the above right spherical triangle) we’ll
use trigonometry based on Napier’s Rules for right spherical triangles . The diagram below 19

14 ​https://en.wikipedia.org/wiki/Spheroid#Oblate_spheroids
15 ​https://en.wikipedia.org/wiki/Earth_ellipsoid
16 ​https://en.wikipedia.org/wiki/Geodesics_on_an_ellipsoid
17 ​https://calgary.rasc.ca/latlong.htm
18 ​https://docs.scipy.org/doc/scipy/reference/generated/scipy.misc.derivative.html
19 ​https://en.wikipedia.org/wiki/Spherical_trigonometry

https://en.wikipedia.org/wiki/Spheroid#Oblate_spheroids
https://en.wikipedia.org/wiki/Earth_ellipsoid
https://en.wikipedia.org/wiki/Geodesics_on_an_ellipsoid
https://calgary.rasc.ca/latlong.htm
https://docs.scipy.org/doc/scipy/reference/generated/scipy.misc.derivative.html
https://en.wikipedia.org/wiki/Spherical_trigonometry

has been marked up with traditional designations for each angle and side as well as which
angles are equivalent. The capital letters are angles and the lower-case letters sides.

Based on theta, which is also ‘B’, and the known distance ‘a’, we can solve for ‘c’. For the
sake of demonstrating an example solution let’s set the value of theta or B to 1 degree
which would make ‘a’ very nearly equal to ‘c’.

Also note that we can use the same formula for distances both above and below track 6 as
the angles and distances are mirror opposites. And these are just the details for a positive
slope - if the slope is negative then we’ll apply a different formula. In the drawings below,
positive slope is demonstrated on the left and negative slope is demonstrated on the right.

Accuracy Notes
By using spherical geometry to solve for our distances we gain simplicity and speed at the
cost of accuracy. “Big Circle” calculations are about 0.3% less accurate than the
millimeters-level accuracy of ellipsoid formulae from e.g. Vincenty . For our purposes, that 20

20
https://community.esri.com/groups/coordinate-reference-systems/blog/2017/10/11/vincenty-formul
a

https://community.esri.com/groups/coordinate-reference-systems/blog/2017/10/11/vincenty-formula
https://community.esri.com/groups/coordinate-reference-systems/blog/2017/10/11/vincenty-formula

loss of accuracy is, again, proportional to the slope of GEDI’s orbit at a given longitude.
Specifically the vertical distance above track 6 will range from 3.0125 km at a 0 degree
slope to 4.6866 km at a 50 degree slope. That means across an orbit the additional error
will range from 9 m to 15 m above track 6 and 3.6 m to 6 m below. When accounting for the
total accuracy of our solution we need to add a static factor of 1.003 (0.3 %) to our
calculated swath path which will then naturally vary the amount of total error as needed.

What We’ve Discovered So Far
We’ve learned about GEDI’s tracks, which one is geo-located and how the others are a
known distance away from each other. The first and last track define the extent of the
swath width or path. We’ve determined polynomials can very accurately fit GEDI’s orbital
path within a specified and configurable distance and that the distance guides the number
of times a GEDI orbit must be partitioned.

We’re almost done with our pre-search code - we’ll cover the last piece we need under the
Search section, which is next, because it helps to first understand the Search algorithm.
This is the order in which I discovered it as well - realizing how the search works makes it
clear what we need to write next.

Search

The heart of the search process is the ability to take an AOI bounding box and know if it
intersects the swath extent. Our polynomial values won’t be used in the search directly but
rather used to calculate this extent. While we haven’t been overly concerned with
performance so far, code for these steps should now be as fast as possible.

We’ve touched on bounding boxes a number of times already and they’re a commonly
used approximation for more complex shapes. Calculating bounding box intersection,
shown later, is also very fast code to run so it’s probably best to use bounding box
intersection detection as far as we can in order to minimize more computationally
expensive steps.

How then do we make a final determination for swath/AOI intersection? There’s complex
math that can figure it out for us, for example ​here​, or if we zoom in far enough on our
polynomial or generalize it maybe we could treat it as a straight line and use Rotational
Directions or other methods demonstrated ​here​.

As I was drawing bounding boxes around polynomials I realized we can achieve true swath
intersection detection with bounding boxes alone so long as we take the set intersection of

https://www.mathworks.com/matlabcentral/fileexchange/11837-fast-and-robust-curve-intersections
https://stackoverflow.com/questions/9043805/test-if-two-lines-intersect-javascript-function/16725715#16725715

longitude values between the AOI bounding box and a polynomial bounding box and then
follow-up with latitude overlap detection:

(The AOI bounding box is in blue and the bounding box based on the set intersection of longitude

values of AOI and polynomial is in red)

In other words, to find our longitude range we would:

1. take the greater of: the minimum longitude of the AOI bounding box vs. the
minimum longitude of the current partition

2. take the the lesser of: the maximum longitude of the AOI bounding box vs. the
maximum longitude of the current partition

Then, if the latitude ranges for each bounding box (AOI and current partition’s swath width)
overlap we know there’s a search hit between the AOI and the granule the partition
belongs to; no difficult or long-running math required. That makes our search
turtles-and-bounding-boxes all the way down! (minus the turtles).

Inflections
And this is where we revisit the last piece of preparation required. Alongside the dynamic
partitioning code, similar to what we did with anti-meridian splitting, we must include
something that will cause a partition split along an orbital path inflection , i.e. the tops and 21

bottoms for each orbit. We can have true swath intersection detection by checking for
overlapping latitudes at the extremes of common longitudes so long as the polynomial’s
slope doesn’t change sign over the common longitudinal range. If we didn’t split at
inflections, notice how the intersection detection described above would fail in this
example:

(The AOI bounding box is in blue. In order to find the upper extent of this polynomial we would e.g.

need to find the inflection point.)

We know GEDI's orbit will only have inflections at its extremes of latitude. Our search is
going to happen one partition at a time so we can avoid inflections in our search process by
splitting partitions at an inflection point, if they have one.

So - how do we detect for inflections and find inflections points? Because the raw
geo-located GEDI data is available to us my initial approach was to go back to that - the
source. Some example ideas included:

● Take the latitude absolute values, filter for those above 51.4 degrees, add up sample
ranges and find the one which has the highest value. Then, take the midpoint as the
inflection point.

● Total the inter-point slope across ranges and find the midpoint of the least
● Create arrays over a predetermined width which collect whether point i < i + 1 and

assign -1 or 1. Then take the array that has a value closest to 0 and use the midpoint
as the inflection point.

21 ​https://en.wikipedia.org/wiki/Inflection_point

https://en.wikipedia.org/wiki/Inflection_point

I think I had other ideas but none were very good. All of these ideas were a programmatic
hassle because GEDI can have irregular data. Jittery data might cause us to label local
maxima or minima as whole orbit inflections so I decided to go back to regression which, of
course, is regularly used to generalize data such as this.

My initial approach was to solve for longitude where the first derivative of each polynomial
equaled zero but once again there is a python library to help us out: scipy.optimize . It has 22

the 'minimize' function which can find the lowest value in a polynomial using a variety of
algorithms. For our purposes we need to find the minimum and maximum over a given
range but scipy.optimize doesn't offer a 'maximize' function. To get around that we can
either invert the sign of our inputs (longitude) or multiply the polynomial coefficients by -1,
either of which would invert the polynomial and allow us to use 'minimize' to find a
maximum.

def​ ​_split_on_inflections​(​lons​, ​lats​, ​pn_degree​):

 ​# A low degree polynomial will be less prone to fitting local maxima.

 ​# We're optimizing over a path which is convex and smooth.

 inf_pn_degree = ​3

 lats_peak_threshold = ​51.4

 skip_amount = ​250000

 inflection_threshold = ​1e-6

 abs_lats = np.abs(lats)

 equatorial_markers = []

 inflection_indices = []

 ​# assemble a list of equatorial markers

 search = ​True

 left_boundary = ​0

 ​while​ search:

 search = ​False

 ​for​ i ​in​ ​range​(left_boundary, ​len​(abs_lats)):

 ​if​ ​0​ < abs_lats[i] < ​1​:

 equatorial_markers.append(i)

 left_boundary = i + skip_amount

 ​if​ left_boundary < ​len​(abs_lats):

 search = ​True

 ​break

 ​# add beginning and end indices to equatorial markers

 markers = [​0​, *equatorial_markers, ​len​(lons) - ​1​]

22 ​https://docs.scipy.org/doc/scipy/reference/optimize.html

https://docs.scipy.org/doc/scipy/reference/optimize.html

 ​# Determine if there are any inflection points

 ​for​ marker_index ​in​ ​range​(​1​, ​len​(markers)):

 left_boundary = markers[marker_index-​1​]

 right_boundary = markers[marker_index]

 ​# Determine possible inflection range

 peak_indices = ​None

 ​for​ i ​in​ ​range​(left_boundary, right_boundary):

 ​if​ abs_lats[i] > lats_peak_threshold:

 ​for​ ii ​in​ ​range​(i, right_boundary):

 ​if​ abs_lats[ii] < lats_peak_threshold:

 peak_indices = [i, ii]

 ​break

 ​if​ ​not​ peak_indices:

 peak_indices = [i, right_boundary - ​1​]

 ​break

 ​if​ peak_indices:

 x1, x2 = peak_indices

 ​# Fit a function and test for inflection point

 pn = generate_polynomial(inf_pn_degree, lons[x1:x2], abs_lats[x1:x2])

 ​# Need to take the inverse of the fitted function because

 ​# scipy.optimize doesn't have 'maximize'

 pn_inverse = np.poly1d([x * -​1​ ​for​ x ​in​ pn])

 opt = minimize(pn_inverse, ​x0​=lons[x1], ​bounds​=[[lons[x1], lons[x2]]])

 ​if​ opt.success:

 lon_min = opt.x[​0​]

 z = inflection_threshold

 ​# If polynomial max value isn't located at either end of our range

then

 ​# an inflection point has been found

 ​if​ (​abs​(lon_min - lons[x1]) > z) ​and​ (​abs​(lon_min - lons[x2]) > z):

 ​# find the offset value based on inflection point

 inflection_indices.append(bisect(lons, lon_min))

 ​# split up lons and lats according to inflection_indices

 ​if​ inflection_indices:

 final_indices_ = [​0​, *inflection_indices, ​len​(lons) - ​1​]

 final_indices = []

 ​# Discard split at inflection if it is too small for us to fit a

 ​# polynomial function

 ​for​ i ​in​ ​range​(​1​, ​len​(final_indices_)):

 ​if​ (final_indices_[i] - final_indices_[i-​1​]) > pn_degree:

 final_indices.append(final_indices_[i-​1​])

 final_indices.append(final_indices_[-​1​])

 result_lons = []

 result_lats = []

 ​for​ i ​in​ ​range​(​1​, ​len​(final_indices)):

 left_boundary = final_indices[i-​1​]

 right_boundary = final_indices[i]

 result_lons.append(lons[left_boundary:right_boundary])

 result_lats.append(lats[left_boundary:right_boundary])

 ​return​ result_lons, result_lats

 ​else​:

 ​return​ [lons], [lats]

def​ ​split_on_inflections​(​lons​, ​lats​, ​pn_degree​):

 ​""" Find the inflections through the anti-meridian halves of a GEDI

 orbit. Takes an array of arrays of longitude values lons, and array

 of arrays of latitude values lats, and the degree of polynomial to

 use to find inflections and returns an array of arrays of longitude

 and latitude values. """

 acc_lons = []

 acc_lats = []

 ​for​ lons_, lats_ ​in​ ​zip​(lons, lats):

 lons_parts, lats_parts = _split_on_inflections(lons_, lats_, pn_degree)

 acc_lons.extend(lons_parts)

 acc_lats.extend(lats_parts)

 ​return​ acc_lons, acc_lats

Search Algorithm
Here’s an outline for the search:

- Take a user-supplied AOI bounding box
- For each granule:

- Check that the AOI bbox intersects the granule bbox
- Perform a binary search (bisect function) over the granule’s partitions to see

where we need to start looking.
- Loop over partitions from the index indicated in the binary search until a

partition is entirely outside of the range of the AOI.

- Check if the AOI intersects the partition bbox
- Check for swath overlap based on longitudinal set intersection

and latitude overlap between partition latitude extremes and
AOI latitude extremes.

As soon as we receive a ‘hit’ on any of a granule’s partitions we may record that granule as
having relevant data to the AOI and may stop further searching within that granule.

Because we’ve stored each granule’s partitions in sorted order we can perform a binary
search to discover the starting point for partition bounding box detection. This will be 23

faster than starting at the beginning and testing each one; such a strategy would on
average find a starting point after N/2 comparisons where N is the number of partitions. A
binary search, however, will average log2(N). For example let's say an orbit contains 1000
partitions: searching from the beginning means averaging 500 tests for a left-most match
whereas a binary search will average 10 tests.

Search Code
The search code comes in two major sections - loading the data into memory and then
performing the actual search. In a production environment, e.g. for a web service, this
prototype would be loaded once and then left to run searches for a period of time because
loading the data can be slow as detailed in the table below.

What is NumPy?
If you’re not familiar with NumPy , it’s a Python library that primarily deals in arrays and 24

mathematical functions. Part of it is written in C and compiled to machine code which
allows it to perform operations outside of the python interpreter . 25

What is Numba?
Numba “is an open source JIT compiler that translates a subset of Python and NumPy code
into fast machine code.” Many performance critical libraries like NumPy are compiled for 26

speed but writing one’s own code in the same way usually requires at least two different
programming ecosystems. An advantage Numba offers is its ability to take code which can
run under the Python interpreter and compile some or all of it into native machine code via
the LLVM compiler, all without a change in the programming ecosystem. The very large
caveat is you’ll be restricted from using any third party libraries, directly or transitively, that
aren’t pure Python. Also, not all Python or NumPy is supported by Numba. The compiler

23 ​https://en.wikipedia.org/wiki/Binary_search_algorithm
24 ​https://numpy.org/doc/stable/user/whatisnumpy.html
25 ​https://stackoverflow.com/questions/8385602/why-are-numpy-arrays-so-fast
26 ​http://numba.pydata.org/

https://en.wikipedia.org/wiki/Binary_search_algorithm
https://numpy.org/doc/stable/user/whatisnumpy.html
https://stackoverflow.com/questions/8385602/why-are-numpy-arrays-so-fast
http://numba.pydata.org/

features are leveraged with a @jit python decorator and in our code we’re supplying
keyword args ​nopython, nogil, ​and ​parallel​.

There are three files that make up the search: search.py, shared.py, and polyder.py and
they are listed in that order below:

search.py
import​ json

import​ numpy ​as​ np

from​ numba ​import​ jit, prange, int8, float64, int64, void

import​ random

from​ time ​import​ sleep

from​ timeit ​import​ default_timer ​as​ timer

import​ settings

from​ shared ​import​ bbox_intersect, get_filenames, is_overlap_sorted_values, poly_bbox

INPUT_PATH = settings.PARTITIONS_05M_PATH

partitions: [('granules_idx'), ('polynomial', (8)), ('bbox', (4)), ('max_error')] ==

14 wide

PARTITIONS_WIDTH = ​14

GRANULES_IDX = ​0

POLYNOMIAL_BEGIN = ​1

POLYNOMIAL_END = ​9

P_BBOX_BEGIN = ​9

P_BBOX_END = ​13

MAX_ERROR = ​13

granules: [('bbox', (4)), ('partitions_offset_left'), ('partitions_offset_right')]

== 6 wide

GRANULES_WIDTH = ​6

G_BBOX_BEGIN = ​0

G_BBOX_END = ​4

PARTITIONS_OFFSET_LEFT = ​4

PARTITIONS_OFFSET_RIGHT = ​5

def​ ​_orbit_bbox​(​partitions​):

 ​""" Takes a granule's partitions 'partitions' and returns the bounding box

 containing all of them. Bounding box is ll, ur format

 [[lon, lat], [lon, lat]]. """

 lon_min = partitions[​0​][​'lon_min'​]

 lat_min = partitions[​0​][​'lat_min'​]

 lon_max = partitions[​0​][​'lon_max'​]

 lat_max = partitions[​0​][​'lat_max'​]

 ​for​ p ​in​ partitions[​1​:]:

 ​if​ p[​'lon_min'​] < lon_min:

 lon_min = p[​'lon_min'​]

 ​if​ p[​'lat_min'​] < lat_min:

 lat_min = p[​'lat_min'​]

 ​if​ p[​'lon_max'​] > lon_max:

 lon_max = p[​'lon_max'​]

 ​if​ p[​'lat_max'​] > lat_max:

 lat_max = p[​'lat_max'​]

 ​return​ [[lon_min, lat_min], [lon_max, lat_max]]

def​ ​load_data​(​input_path​):

 ​""" Takes a filesystem path input_path and returns a tuple of

 (urls, granules, partitions, partitions_lons_max, min_lat,

 max_lat). """

 ​# ​NOTE​: simulating two years of data with 1 month repeated

 dataset_multiplier = ​24

 ​# Determine the dimensions of ndarrays

 filenames = get_filenames(input_path)

 granules_count = ​0

 partitions_count = ​0

 ​for​ f ​in​ filenames:

 granules_count += ​1

 ​with​ ​open​(input_path + f) ​as​ g:

 partitions_count += ​len​(json.load(g))

 granules_count = granules_count * dataset_multiplier

 partitions_count = partitions_count * dataset_multiplier

 ​# Create ndarrays

 partitions = np.zeros((partitions_count, PARTITIONS_WIDTH))

 granules = np.zeros((granules_count, GRANULES_WIDTH))

 ​# Populate data

 urls = []

 partitions_lons_max = np.zeros((partitions_count))

 granules_idx = ​0

 partitions_idx = ​0

 ​for​ _ ​in​ ​range​(dataset_multiplier):

 ​for​ f ​in​ filenames:

 ​# append to list of urls

 urls.append(​'https://placeholder.url/'​ + f)

 ​# assign values to granule and partitions

 ​with​ ​open​(input_path + f) ​as​ g:

 partitions_json = json.load(g)

 granules[granules_idx][PARTITIONS_OFFSET_LEFT] = partitions_idx

 granules[granules_idx][PARTITIONS_OFFSET_RIGHT] = partitions_idx +

len​(partitions_json) - ​1

 ​for​ p ​in​ partitions_json:

 ​# set all the values in this partition

 partitions_view = partitions[partitions_idx]

 partitions_view[GRANULES_IDX] = granules_idx

 np.put(partitions_view, np.arange(POLYNOMIAL_BEGIN, POLYNOMIAL_END),

tuple​(p[​'pn'​]))

 np.put(partitions_view, np.arange(P_BBOX_BEGIN, P_BBOX_END),

[p[​'lon_min'​], p[​'lat_min'​], p[​'lon_max'​], p[​'lat_max'​]])

 partitions_view[MAX_ERROR] = p[​'max_error'​]

 ​# set a separate value for binary search

 partitions_lons_max[partitions_idx] = p[​'lon_max'​]

 ​# increment for the next partition

 partitions_idx += ​1

 np.put(granules[granules_idx], np.arange(G_BBOX_BEGIN, G_BBOX_END),

np.array(_orbit_bbox(partitions_json)).flatten())

 granules_idx += ​1

 ​# Find the minimum latitude and maximum latitude across all partitions

 min_lat = ​0

 max_lat = ​0

 ​for​ i ​in​ ​range​(​0​, ​len​(granules)):

 minl = (granules[i][G_BBOX_BEGIN:G_BBOX_END])[​1​]

 maxl = (granules[i][G_BBOX_BEGIN:G_BBOX_END])[​3​]

 ​if​ min_lat > minl:

 min_lat = minl

 ​if​ max_lat < maxl:

 max_lat = maxl

 ​return​ urls, granules, partitions, partitions_lons_max, min_lat, max_lat

@jit

def​ ​_search​(​granules_idx​, ​aoi_bbox​, ​granules​, ​partitions​, ​partitions_lons_max​,

matched_granules​):

 aoi_lon_min = aoi_bbox[​0​][​0​]

 aoi_lon_max = aoi_bbox[​1​][​0​]

 aoi_lat_min = aoi_bbox[​0​][​1​]

 aoi_lat_max = aoi_bbox[​1​][​1​]

 g_bbox = (granules[granules_idx][G_BBOX_BEGIN:G_BBOX_END]).copy().reshape((​2​, ​2​))

 ​# Does aoi_bbox intersect this granule's bbox

 ​if​ bbox_intersect(aoi_bbox, g_bbox):

 left_idx = ​int​(​round​(granules[granules_idx][PARTITIONS_OFFSET_LEFT]))

 right_idx = ​int​(​round​(granules[granules_idx][PARTITIONS_OFFSET_RIGHT] + ​1​))

 partitions_view = partitions[left_idx:right_idx]

 partitions_lons_max_view = partitions_lons_max[left_idx:right_idx]

 ​# Binary search on sorted values

 start_idx = np.searchsorted(partitions_lons_max_view, aoi_lon_min)

 ​# Iterate through relevant partitions

 ​for​ i ​in​ ​range​(start_idx, right_idx+​1​):

 ​# Check for longitude overlap. ​NOTE​: is_overlap_sorted_values is

 ​# not used here because NaN raw data values can cause partition

 ​# splits resulting in a premature end to this loop if we were

 ​# to use that function.

 p_lon_min = (partitions_view[i][P_BBOX_BEGIN:P_BBOX_END])[​0​]

 ​if​ aoi_lon_max > p_lon_min:

 ​# Check for whole partition bbox overlap with aoi_bbox

 p_bbox =

(partitions_view[i][P_BBOX_BEGIN:P_BBOX_END]).copy().reshape((​2​, ​2​))

 ​if​ bbox_intersect(p_bbox, aoi_bbox):

 ​# Check for specific calculated swath overlap. Generate a

 ​# bounding box for the polynomial that is:

 ​# - the greater of aoi_lon_min, p_lon_min

 ​# - the lesser of aoi_lon_max, p_lon_max

 ​# p_g_ is short for polynomial, generated

 p_lon_max = (partitions_view[i][P_BBOX_BEGIN:P_BBOX_END])[​2​]

 p_g_lon_min = aoi_lon_min ​if​ aoi_lon_min > p_lon_min ​else

p_lon_min

 p_g_lon_max = aoi_lon_max ​if​ aoi_lon_max < p_lon_max ​else

p_lon_max

 p_g_bbox =

poly_bbox(partitions_view[i][POLYNOMIAL_BEGIN:POLYNOMIAL_END], p_g_lon_min,

p_g_lon_max, partitions_view[i][MAX_ERROR])

 ​# We know specific longitudes of each bbox overlap; now

 ​# detect specific latitude overlap.

 p_g_lat_min = p_g_bbox[​0​][​1​]

 p_g_lat_max = p_g_bbox[​1​][​1​]

 ​if​ is_overlap_sorted_values(p_g_lat_min, p_g_lat_max, aoi_lat_min,

aoi_lat_max):

 ​# aoi_bbox and partition overlap; update matched_granules and

end search for this granule

 matched_granules[granules_idx] = ​True

 ​break

 ​else​:

 ​break

@jit​(​nopython​=​True​, ​nogil​=​True​, ​parallel​=​True​)

def​ ​search​(​aoi_bbox​, ​granules​, ​partitions​, ​partitions_lons_max​, ​granules_bbox​):

 ​# An array that will have each element set to 1 according to each granule

 ​# that matches a given aoi_bbox.

 matched_granules = np.zeros(​len​(granules), ​dtype​=np.bool_)

 ​# Verify the aoi_bbox is within at least one of the granules_bbox

 ​if​ bbox_intersect(aoi_bbox, granules_bbox):

 ​# parallel processing across granules

 ​for​ granules_idx ​in​ prange(​len​(granules)):

 _search(granules_idx, aoi_bbox, granules, partitions, partitions_lons_max,

matched_granules)

 ​return​ np.nonzero(matched_granules)[​0​]

def​ ​granules_to_urls​(​granules_idxs​, ​urls​):

 ​""" Takes an array of granules indexes granules_idx and urls array 'urls'

 and returns a list of urls that correspond to the indices. """

 results = []

 ​for​ idx ​in​ granules_idxs:

 results.append(urls[idx])

 ​return​ results

def​ ​random_bbox​():

 ​""" Returns random bbox around part of the amazon (roughly) in ll, ur

 format [[lon, lat], [lon, lat]]. """

 lons_fn = ​lambda​: random.uniform(-​74.0​, -​70​)

 lats_fn = ​lambda​: random.uniform(​1.1​, ​3.9​)

 lons = ​sorted​((lons_fn(), lons_fn()))

 lats = ​sorted​((lats_fn(), lats_fn()))

 ​return​ np.array([[lons[​0​], lats[​0​]], [lons[​1​], lats[​1​]]])

def​ ​benchmark​():

 test_bboxes = [np.array([[-​74.1​, ​3.1​], [-​73.7​, ​3.3​]]),

 np.array([[-​74.1​, ​2.9​], [-​73.3​, ​3.3​]]),

 np.array([[-​74.1​, ​2.7​], [-​72.9​, ​3.3​]]),

 np.array([[-​74.1​, ​2.5​], [-​72.5​, ​3.3​]]),

 np.array([[-​74.1​, ​2.3​], [-​72.1​, ​3.3​]]),

 np.array([[-​74.1​, ​2.1​], [-​71.7​, ​3.3​]]),

 np.array([[-​74.1​, ​1.9​], [-​71.3​, ​3.3​]]),

 np.array([[-​74.1​, ​1.7​], [-​70.9​, ​3.3​]]),

 np.array([[-​74.1​, ​1.5​], [-​70.5​, ​3.3​]]),

 np.array([[-​74.1​, ​1.3​], [-​70.1​, ​3.3​]])]

 rand_bboxes = [random_bbox() ​for​ _ ​in​ ​range​(​10​)]

 ​# Load data

 start_time = timer()

 urls, granules, partitions, partitions_lons_max, min_lat, max_lat =

load_data(INPUT_PATH)

 end_time = timer()

 ​print​(​'Load time: ​{0:.3f}​ seconds'​.format(end_time - start_time))

 sleep(​3​)

 granules_bbox = np.array([[-​180.0​, min_lat], [​180.0​, max_lat]])

 ​# warm up for Numba and JIT

 ​for​ _ ​in​ ​range​(​10​):

 ​for​ t ​in​ test_bboxes:

 granules_idxs = search(t, granules, partitions, partitions_lons_max,

granules_bbox)

 ​# establish search time

 start_time = timer()

 ​for​ b ​in​ rand_bboxes:

 granules_idxs = search(b, granules, partitions, partitions_lons_max,

granules_bbox)

 granules_to_urls(granules_idxs, urls)

 end_time = timer()

 ​print​(​'Search time: ​{0:.9f}​ seconds'​.format((end_time - start_time) /

len​(test_bboxes)))

 ​# return URLs for a search

 granules_idxs = search(test_bboxes[​0​], granules, partitions, partitions_lons_max,

granules_bbox)

 ​print​(​sorted​(granules_to_urls(granules_idxs, urls)))

if​ ​__name__​ == ​"__main__"​:

 benchmark()

shared.py
import​ math

import​ os

import​ numpy ​as​ np

from​ numba ​import​ jit

from​ polyder ​import​ polyder

one degree latitude distance in kilometers

ODL_DISTANCE = ​110.5743

Factor in error introduced by spherical trigonometry

STATIC_MULT = ​1.003

Distance from track 6 to 0 perpendicular to orbit

PERPENDICULAR_ABOVE_DISTANCE = ​3.0125​ ​# in km

Distance from track 6 to 7 perpendicular to orbit

PERPENDICULAR_BELOW_DISTANCE = ​1.2125​ ​# in km

def​ ​get_filenames​(​path​):

 ​""" Takes a filesystem path and returns a sorted list of filenames under

 that path. """

 xs = []

 ​for​ (dirpath, dirnames, filenames) ​in​ os.walk(path):

 xs.extend(filenames)

 ​break

 xs.sort()

 ​return​ xs

@jit

def​ ​polyval​(​p​, ​x​):

 ​""" Takes a sequence p representing a polynomial and a number x and

 returns the value of p at x. This version is Numba-compatible; NumPy's

 version is not. """

 val = ​0

 ii = ​len​(p) - ​1

 ​for​ i ​in​ ​range​(​len​(p) - ​1​):

 val += p[i] * (x ** ii)

 ii -= ​1

 ​return​ val + p[-​1​]

@jit

def​ ​is_overlap_sorted_values​(​v1​, ​v2​, ​w1​, ​w2​):

 ​""" Takes two pairs of values, v1, v2 and w1, w2 and returns a boolean

 result indicating whether the range v1, v2 (inclusive) contains any

 values in the range w1, w2 (inclusive). """

 ​if​ (v2 < w1) ​or​ (v1 > w2):

 ​return​ ​False

 ​else​:

 ​return​ ​True

@jit

def​ ​bbox_intersect​(​a_ary​, ​b_ary​):

 ​""" Takes two nested two dimensional arrays, a_ary and b_ary,

 representing a bounding box in ll, ur format

 [[lon, lat], [lon, lat]]. Returns a boolean result as to whether the

 bounding boxes overlap. """

 ​# Do any of the 4 corners of one bbox lie inside the other bbox?

 ​# bbox format of [ll, ur]

 ​# bbx[0] is lower left

 ​# bbx[1] is upper right

 ​# bbx[0][0] is lower left longitude

 ​# bbx[0][1] is lower left latitude

 ​# bbx[1][0] is upper right longitude

 ​# bbx[1][1] is upper right latitude

 ​# Detect longitude and latitude overlap

 ​if​ is_overlap_sorted_values(a_ary[​0​][​0​], a_ary[​1​][​0​], b_ary[​0​][​0​], b_ary[​1​][​0​]) \

 ​and​ is_overlap_sorted_values(a_ary[​0​][​1​], a_ary[​1​][​1​], b_ary[​0​][​1​],

b_ary[​1​][​1​]):

 ​return​ ​True

 ​else​:

 ​return​ ​False

@jit

def​ ​_deg_to_rad​(​deg​):

 ​""" Takes a degree value deg and returns the equivalent value in

 radians. """

 ​return​ deg * math.pi / ​180

@jit

def​ ​_rad_to_deg​(​rad​):

 ​""" Takes a radian value rad and returns the equivalent value in

 degrees. """

 ​return​ rad * ​180​ / math.pi

@jit

def​ ​_angle_from_slope​(​poly_ary​, ​lon​):

 ​""" Takes a polynomial array poly_ary and a longitude value lon and

 returns the angle in radians at that longitude. """

 ​# find the first derivative

 poly = polyder(poly_ary, ​1​)

 ​# get the slope at our point of interest

 slope = polyval(poly, lon)

 ​# get the angle from the slope

 angle = math.atan(slope)

 ​return​ angle ​# in radians

@jit

def​ ​_slope_pos_vert_distance​(​B​, ​perp​):

 ​""" Takes an acute angle B and distance in kilometers perp and returns the

 distance perpendicular to the equator. Assumes an orbital section

 positive in slope. """

 ​# get the arc length of 'a' at around this latitude

 a = _deg_to_rad(perp / ODL_DISTANCE)

 ​# arclength from beam 0110 to first or last beam vertically

 arclength = math.atan(math.tan(a) / math.cos(B))

 ​# distance in km from beam 0110 to first or last vertically

 beam_distance = _rad_to_deg(arclength) * ODL_DISTANCE

 ​return​ beam_distance ​# in km

@jit

def​ ​_slope_neg_vert_distance​(​B​, ​perp​):

 ​""" Takes an acute angle B and distance in kilometers perp and returns the

 distance perpendicular to the equator. Assumes an orbital section

 negative in slope. """

 ​# get the arc length of 'a' at around this latitude

 c = _deg_to_rad(perp / ODL_DISTANCE)

 ​# arclength from beam 0110 to first or last beam vertically

 arclength = math.atan(math.cos(B) * math.tan(c))

 ​# distance in km from beam 0110 to first or last vertically.

 beam_distance = _rad_to_deg(arclength) * ODL_DISTANCE

 ​return​ beam_distance ​# in km

@jit

def​ ​poly_bbox​(​poly_ary​, ​lon_min​, ​lon_max​, ​max_error​):

 ​""" Takes a polynomial array poly_ary, starting longitude lon_min, ending

 longitude lon_max, and error distance max_error and returns a nested

 array representing a bounding box for a GEDI swath extent. Return

 value is in ll, ur format [[lon, lat], [lon, lat]]. """

 ​# Angle 'B' is also theta

 B_lon_min = _angle_from_slope(poly_ary, lon_min)

 B_lon_max = _angle_from_slope(poly_ary, lon_max)

 ​# Slope assumptions:

 ​# 1) will never be 0 at orbit major maximum or minimum

 ​# 2) will never change sign because of #1

 ​# Therefore, slopes are assumed continuously increasing or decreasing

 slope_is_positive = ​True​ ​if​ B_lon_min > ​0​ ​else​ ​False

 ​if​ slope_is_positive:

 ​# lat min will be at min lon

 lat_min_ = polyval(poly_ary, lon_min)

 ​# lat max will be at max lon

 lat_max_ = polyval(poly_ary, lon_max)

 ​# find the latitudinal distance using rules for right spherical triangles

 distance_below = _slope_pos_vert_distance(B_lon_min,

PERPENDICULAR_BELOW_DISTANCE)

 distance_above = _slope_pos_vert_distance(B_lon_max,

PERPENDICULAR_ABOVE_DISTANCE)

 ​else​: ​# slope is negative

 ​# lat min will be at max lon

 lat_min_ = polyval(poly_ary, lon_max)

 ​# lat max will be at min lon

 lat_max_ = polyval(poly_ary, lon_min)

 ​# find the latitudinal distance using rules for right spherical triangles

 distance_below = _slope_neg_vert_distance(B_lon_min,

PERPENDICULAR_BELOW_DISTANCE)

 distance_above = _slope_neg_vert_distance(B_lon_max,

PERPENDICULAR_ABOVE_DISTANCE)

 ​# subtract distance from 0110 beam to 0111 beam

 lat_min = lat_min_ - ((distance_below * STATIC_MULT) - max_error) / ODL_DISTANCE

 ​# add distance from 0110 beam to 0000 beam

 lat_max = lat_max_ + ((distance_above * STATIC_MULT) + max_error) / ODL_DISTANCE

 ​# bbox format of [ll, ur]

 bbox = np.array([[lon_min, lat_min], [lon_max, lat_max]])

 ​return​ bbox

polyder.py
import​ numpy.core.numeric ​as​ NX

from​ numba ​import​ jit

"""

This code has been lifted and modified from NumPy and is licensed under

a BSD 3-Clause "New" or "Revised" License.

- - - - -

Copyright (c) 2005-2020, NumPy Developers.

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are

met:

 * Redistributions of source code must retain the above copyright

 notice, this list of conditions and the following disclaimer.

 * Redistributions in binary form must reproduce the above

 copyright notice, this list of conditions and the following

 disclaimer in the documentation and/or other materials provided

 with the distribution.

 * Neither the name of the NumPy Developers nor the names of any

 contributors may be used to endorse or promote products derived

 from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

© 2020 GitHub, Inc.

"""

@jit

def​ ​polyder​(​p​, ​m​=​1​):

 ​""" Takes a numpy array p representing a polynomial and an integer m

 representing the number of times to take the derivative m and returns

 a numpy array representing a derivative of that polynomial. Note:

 this implementation is Numba-compatible; the NumPy version is not.

 Taken from NumPy. """

 m = ​int​(m)

 p = NX.asarray(p)

 n = ​len​(p) - ​1

 y = p[:-​1​] * NX.arange(n, ​0​, -​1​)

 ​if​ m == ​0​:

 val = p

 ​else​:

 val = polyder(y, m - ​1​)

 ​return​ val

Search Code, Explained

The code in search.py is a little more obtuse than usual in order to make it compatible with
Numba as well as to get some performance gains when or if Numba isn’t used. The data
structures used and rationale behind them, in particular, should be addressed.

Numba requires homogeneous arrays. NumPy also deals in homogeneous arrays but gets
around mixed types by allowing for arrays of all scalars or all objects. Arrays of objects may
point to arrays of scalars or of objects, and so on. In this way NumPy can support mixed
types, irregular shaped arrays, and structured arrays (‘structs’). Numba can’t use object
arrays because the preferred runtime modes ​nopython​ and ​nogil​ can’t use the python
runtime to handle object manipulation.

1. If we wish to store floats (doubles) then the whole array needs to be of that type
2. If we use a multidimensional array then the contained arrays need to all be the

same size and type

The second constraint is the most problematic for us because, while the storage
requirements for each partition are the same, the number of partitions per orbit is not.
That and other shape irregularities preclude us from using multidimensional arrays for all
of our data.

A common way around this problem is to implement a multidimensional array the same
way computers do - as one dimensional with all nested dimensions referenced by slice. We
would then use one or more arrays to hold the offsets and lengths for each of the other
dimensions. Lastly, we can store regularly-sized complex data structures based on constant
offsets and ranges within the final array dimension. In our case we use one array for orbit
and partition offsets and another array for all the partitions.

The third array is a denormalized copy of partition longitudes but it’s there as a convenient
and efficient way to bisect / binary search (vs. constructing something on-the-fly from
normalized data). By using an additional array here we’re able to take advantage of

additional performance through data locality which translates to fewer requests to main 27

memory.

We specified ​parallel​ as a Numba argument to the @jit decorator. It indicates our interest in
leveraging explicit or implicit parallelism in our code. The Numba documentation has a
more complete description of its capabilities but our code is using the explicit style via the
prange​ function. Without the @jit decorator ​prange​ is interpreted by python the same as
range​. However, with @jit(parallel) the compiler attempts to arrange execution in parallel
map fashion. By default it fires up a number of threads equal to the system’s core count
and splits work (in our case, searching orbits) among those threads. Our search process is
an example of an “embarrassingly parallel” problem and ​prange​ and other functions like it 28

were created to work on exactly those types of problems.

One very important design consideration: how do we know this code is thread safe? By
running our compiled python outside of the interpreter and the GIL we leave behind both 29

the performance limitations and the protections afforded by CPython; we are at liberty to
corrupt our data and must ensure thread safety through other means.

The search code works with two main categories of data: the search arrays and the results
array. The search arrays are built before searching occurs and thereafter are then
read-only by convention (but not by requirement). Read-only data is always safe to use in
concurrently running code. The results array requires a little more thought, however. We
need to be able to take the results of a search and return the URLs for granules that match
a user’s AOI. Concurrent access to mutable data requires some kind of coordination,
specified either with concurrency primitives, thread-safe higher level data types, etc. or by
some kind of logical separation and isolated mutation. The latter is typically faster and
more elegant, where possible, and achieves safety by removing the concern of shared
mutation instead of trying to manage it.
We can do this with the results array by using the granule number in our search data as the
offset for each element. Because a thread will never have another thread's granule (via
prange​), it will also never write to another thread’s results element. The tradeoff is most of
the time we’ll be over-allocating space to store our results but supporting fast
multithreading is easily worth this small memory cost.

The per-granule verdict of a search is either match or no-match so if a thread finds a
partition that has true swath path intersection with the AOI then the thread immediately
writes a ‘1’ to the correspond granule’s element in the results array and is then ready to
work on another granule. If no match is found, that element in the results array remains ‘0’.

27 ​https://en.wikipedia.org/wiki/Locality_of_reference
28 ​https://en.wikipedia.org/wiki/Embarrassingly_parallel
29 ​https://wiki.python.org/moin/GlobalInterpreterLock

https://en.wikipedia.org/wiki/Locality_of_reference
https://en.wikipedia.org/wiki/Embarrassingly_parallel
https://wiki.python.org/moin/GlobalInterpreterLock

After the search has gone through all orbits the parallel section of the code ends and we’re
free to use the results array in single-threaded fashion by reading across all of the indices
and detecting which ones are no longer zero.

The rest of the code is mostly self-explanatory or has already been described in e.g. The
Shape of GEDI, Part 2. There are two NumPy functions we need for the prototype that
aren’t Numba compatible so I had to edit the one and write the other. The first function is
polyder​ and I’ve indicated in the comments it was a lift from NumPy. I wrote the second
function, ​polyval​, along with the rest of the software.

Search Performance
The search performance is very good even without Numba but when it’s enabled the
library+compiler makes the run time two orders of magnitude faster. It’s my understanding
a speed increase of that amount is typical for Numba when compared to CPython.

How fast the search runs depends on a number of variables. Those as well as some
re-stated information about partitions are detailed in the table below. Note: the dataset
used was the month of May, 2019. All two-year numbers are extrapolated by multiplying
the data (not the final numbers but actually increasing the amount of data loaded via
duplication) by 24.

Partitions specified
error threshold

0.030 km 0.020 km 0.010 km 0.005 km

Partitions mean
accuracy

0.0282164 km 0.0188838 km 0.0094202 km 0.0047340 km

Partitions time to
generate, per
month of data

17.51 hours 17.25 hours 18.71 hours 19.01 hours

Partitions size on
disk, 2 year (*)

3.84 GB 5.77 GB 10.22 GB 16.10 GB

Partitions load time
(*) (+)

103.782 seconds
(+)

150.246 seconds
(+)

282.970 seconds
(+)

448.251 seconds
(+)

Python, memory
used (*)

1.16 GB 1.71 GB 2.94 GB 4.60 GB

Python, time to
search (*)

0.325611475
seconds

0.378034381
seconds

0.550040546
seconds

0.661551114
seconds

Numba, system
memory used (*)

1.15 GB 1.71 GB 2.96 GB 4.64 GB

Numba, time to
search (*)

0.002471092
 seconds

0.004112495
seconds

0.005550449
seconds

0.008975056
seconds

● (*) Entries with an asterisk, including all searches, used a 2-year (simulated) dataset
● (+) Data load times for a simulated 2 years can actually be as fast as < 1 second with

serialization code in play (not shown; it was trivial to implement though). I’d still
recommend loading the data for a long running process that could serve many
requests, though.

● There were ten AOI bounding boxes used for searching and the average run-time
was used as the “time to search”. The timed search took place after warming up the
JIT compiler with non-identical searches.

● The system used for these tests was a commodity desktop: AMD Ryzen 3900X
12-core / 24-thread, with 32GB of memory and SSD storage. Tests were conducted
on bare metal (no virtualization).

● Partition generation ran with 24 + 1 processes (Python multiprocess library).
● The partitions were stored as JSON (text).
● All partitions were configured to use 7-degree polynomials.

Miscellany

Improvements for the Future
Now that we have our prototype there’s still a lot of room for improvement and worthwhile
exploration left. Some ideas include:

● Write a web service that integrates this prototype to an API and front-end.
● Explore other forms of regression for generalizing GEDI geo-located data.
● In many ways we’ve already compared the difference between spherical and

ellipsoid geodesics but writing a prototype that used ellipsoid models throughout
and seeing the performance differences would be worthwhile.

● Try different polynomials; using 7-degree polynomials was just a guess. This likely
wouldn’t impact search time very much but could improve memory requirements.

● Investigate ways this prototype could integrate with a larger body of software
capable of spatial, temporal, and band subsetting for GEDI, as that is the next tool a
scientist would likely reach for.

● Some code refactoring might help as well.

Code that didn’t make it
There was a fair amount of code that didn’t make it into the final version of the prototype
as most of it was written and then rewritten a handful of times but I think that’s acceptable
for an exploratory project such as this one. For example, here’s the first version of my
bounding box intersection detection code versus the one that replaced it. In the first
version I was thinking of the problem more two-dimensionally and in the second version I
realized the problem can be solved more simply by projecting the two dimensions to each
one-dimensional and solving them in turn. The second version is easier to follow and test:

First version (some comments removed):
def​ ​bbox_intersect​(​a_ary​, ​b_ary​):

 a_lon_min = a_ary[​0​][​0​]

 a_lon_max = a_ary[​1​][​0​]

 a_lat_min = a_ary[​0​][​1​]

 a_lat_max = a_ary[​1​][​1​]

 b_lon_min = b_ary[​0​][​0​]

 b_lon_max = b_ary[​1​][​0​]

 b_lat_min = b_ary[​0​][​1​]

 b_lat_max = b_ary[​1​][​1​]

 ​if​ (​# Detect if a corner of 'b' is inside 'a'

 ​# Detect 'a' edge-only overlap with 'b'

 ​# Detect 'b' is wholly inside 'a'

 (((a_lon_min <= b_lon_min) ​and​ (a_lon_max >= b_lon_min)) ​or

 ((a_lon_min <= b_lon_max) ​and​ (a_lon_max >= b_lon_max))

 ​and

 ((a_lat_min <= b_lat_min) ​and​ (a_lat_max >= b_lat_min)) ​or

 ((a_lat_min <= b_lat_max) ​and​ (a_lat_max >= b_lat_max)))

 ​# Detect if a corner of 'a' is inside 'b'

 ​# Detect 'b' edge-only overlap with 'a'

 ​# Detect 'a' is wholly inside 'b'

 ​or

 (((b_lon_min <= a_lon_min) ​and​ (b_lon_max >= a_lon_min)) ​or

 ((b_lon_min <= a_lon_max) ​and​ (b_lon_max >= a_lon_max))

 ​and

 ((b_lat_min <= a_lat_min) ​and​ (b_lat_max >= a_lat_min)) ​or

 ((b_lat_min <= a_lat_max) ​and​ (b_lat_max >= a_lat_max)))):

 ​return​ ​True

 ​else​:

 ​return​ ​False

Second and current version (some comments removed):

def​ ​is_overlap_sorted_values​(​v1​, ​v2​, ​w1​, ​w2​):

 ​if​ (v2 < w1) ​or​ (v1 > w2):

 ​return​ ​False

 ​else​:

 ​return​ ​True

def​ ​bbox_intersect​(​a_ary​, ​b_ary​):

 ​# Detect longitude and latitude overlap

 ​if​ is_overlap_sorted_values(a_ary[​0​][​0​], a_ary[​1​][​0​], b_ary[​0​][​0​], b_ary[​1​][​0​]) \

 ​and​ is_overlap_sorted_values(a_ary[​0​][​1​], a_ary[​1​][​1​], b_ary[​0​][​1​],

b_ary[​1​][​1​]):

 ​return​ ​True

 ​else​:

 ​return​ ​False

Summary
Over its two year mission GEDI will release coordinate data totalling 373 GB when stored as
text or 149 GB when stored in a binary format. The coordinate data will contain over
10,009,000,000 points.

What we’ve essentially created is a form of lossy compression that not only decreases the
amount of storage needed by 32:1 but also makes those 10 billion points searchable with a
high degree of accuracy in 1/100th of a second, requiring only a single compute instance
and commodity hardware.

I hope you enjoyed reading this as much as I did in writing it. If you would like to make any
corrections or suggestions ​please​ contact Element 84 - I’ll address it ASAP. This paper has
not yet been science reviewed and any mistakes you may find (science or otherwise) are
my own.

A sincere thank you to Element 84: they’re a fantastic company full of capable people and
it’s because of them I’ve had the opportunity to be in an environment that made this work
possible.

–Ryan Waters

